Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/60173
Campo DC Valoridioma
dc.contributor.authorGuerra-Moreno, Ivánen_US
dc.contributor.authorNavarro-Mesa, Juan L.en_US
dc.contributor.authorRavelo-Garcia, Antonio G.en_US
dc.contributor.authorSuárez Araujo, Carmen Pazen_US
dc.date.accessioned2020-01-15T11:29:27Z-
dc.date.available2020-01-15T11:29:27Z-
dc.date.issued2019en_US
dc.identifier.isbn978-3-030-20520-1en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/60173-
dc.description.abstractThe detection and quantification of rainfall is of paramount importance in many application contexts. The research work we present here is devoted to design a system to detect meteorological phenomena in situations of risk. Particularly, we extend the usage of systems designed for other specific purposes incorporating them weather observation as a new service. We investigate how machine learning techniques can be used to design rain detection and quantification algorithms that learn directly from data and become robust enough to perform detection under changing conditions over time. We show that Recurrent Neural Networks are well suited for rainfall quantification, and no precise knowledge of the underlying propagation model is necessary. We propose a recurrent neural architecture with two layers. A first layer acts as a detector-quantifier and it is trained using known precipitations from near rain gauges. The second layer plays the role of calibration that transforms previous levels into rainfall quantitation values. A very important aspect of our proposal is the feature extraction module, which allow a reliable detection and accurate quantification. We study several options for extracting the most discriminative features associated to rain and no rain events. We show that our system can detect and quantify rain-no rain events with promising results in terms of sensitivity (76,6%), specificity (97,0%) and accuracy (96,5%). The histograms of error and the accumulated rain rates show good performance, as well.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relationSistema de Vigilancia Meteorológica para el Seguimiento de Riesgos Medioambientalesen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceAdvances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, v. 11506 LNCS, p. 39-51en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject25 Ciencias de la tierra y del espacioen_US
dc.subject.otherRecurrent neural networksen_US
dc.subject.otherPattern recognitionen_US
dc.subject.otherRain detectionen_US
dc.subject.otherRainfall quantificationen_US
dc.subject.otherReceived signal strengthen_US
dc.subject.otherMicrowave linksen_US
dc.titleOn the application of a recurrent neural network for rainfall quantification based on the received signal from microwave Linksen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBook parten_US
dc.relation.conference15th International Work-Conference on Artificial Neural Networks (IWANN)
dc.relation.conference15th International Work-Conference on Artificial Neural Networks, IWANN 2019
dc.identifier.doi10.1007/978-3-030-20521-8_4en_US
dc.identifier.scopus85067460186-
dc.identifier.isi000490721600004-
dc.contributor.authorscopusid56006394700-
dc.contributor.authorscopusid9634488300-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid6603605708-
dc.identifier.eissn1611-3349-
dc.description.lastpage51en_US
dc.description.firstpage39en_US
dc.relation.volume11506en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.contributor.daisngid8411268-
dc.contributor.daisngid2630721-
dc.contributor.daisngid1986395-
dc.contributor.daisngid9879072-
dc.identifier.eisbn978-3-030-20521-8-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Guerra-Moreno, I-
dc.contributor.wosstandardWOS:Navarro-Mesa, JL-
dc.contributor.wosstandardWOS:Ravelo-Garcia, AG-
dc.contributor.wosstandardWOS:Suarez-Araujo, CP-
dc.date.coverdate2019en_US
dc.identifier.supplement0302-9743-
dc.identifier.supplement0302-9743-
dc.identifier.conferenceidevents121654-
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.contributor.buulpgcBU-INFen_US
dc.contributor.buulpgcBU-INFen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,427
dc.description.sjrqQ2
dc.description.spiqQ1
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate12-06-2019-
crisitem.event.eventsstartdate12-06-2019-
crisitem.event.eventsenddate14-06-2019-
crisitem.event.eventsenddate14-06-2019-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-3860-3424-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameGuerra Moreno, Ivan Daniel-
crisitem.author.fullNameNavarro Mesa, Juan Luis-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
Colección:Capítulo de libro
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.