Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/60051
DC FieldValueLanguage
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorMendonca, Fabioen_US
dc.contributor.authorJuliá Serdá, Gabrielen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo-Garcia, Antonio G.en_US
dc.date.accessioned2020-01-10T10:58:16Z-
dc.date.available2020-01-10T10:58:16Z-
dc.date.issued2019en_US
dc.identifier.issn0941-0643en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/60051-
dc.description.abstractObstructive sleep apnea is considered to be one of the most prevalent sleep-related disorders that can affect the general population. However, the gold standard for the diagnosis, polysomnography, is an expensive and complicated process that is commonly unavailable to a large group of the population. Alternatively, automatic approaches have been developed to address this issue. One of the goals of this research is to perform the classification of the apnea events with the lowest possible number of sensors. Therefore, the blood oxygen saturation signal was employed in this work since it is correlated with the occurrence of apnea events and it can be measured from a single noninvasive sensor. The events detection was performed by a combination of classifiers. However, choosing the type of classifier to combine and select the most relevant features for each classifier is considered to be a well-known problem in the field of machine learning. A self-configuring classifier combination technique based on genetic algorithms was developed for multiple classifiers and features selection which was tested along with different databases and input sizes. The best performance for obstructive sleep apnea detection was achieved using maximum voting independent feature selection with 1 min time window having the best sensitivity of 82.48% similar database in the literature. This model was later tested on another database for cross-database accuracy. With an average accuracy of 91.33%, the system proved its capabilities for clinical diagnosis since the model was developed and validated with both subject and database independence.en_US
dc.languageengen_US
dc.relationProjeto Estratégico UID/EEA/50009/2019en_US
dc.relationProject Number M1420-01-01450FEDER0000002en_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.sourceNeural Computing & Applications[ISSN 0941-0643], v. 32, p. 17825–17841en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherOxygen-Saturationen_US
dc.subject.otherFeature-Selectionen_US
dc.subject.otherOximetryen_US
dc.subject.otherRisken_US
dc.titleSC3: self-configuring classifier combination for obstructive sleep apneaen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00521-019-04582-2en_US
dc.identifier.scopus85074842533-
dc.identifier.isi000494404300001-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid6603171553-
dc.contributor.authorscopusid57200602527-
dc.contributor.authorscopusid9634135600-
dc.identifier.eissn1433-3058-
dc.identifier.issue24-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid4069296-
dc.contributor.daisngid6442981-
dc.contributor.daisngid2942583-
dc.contributor.daisngid1189663-
dc.contributor.daisngid1986395-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mostafa, SS-
dc.contributor.wosstandardWOS:Mendonca, F-
dc.contributor.wosstandardWOS:Julia-Serda, G-
dc.contributor.wosstandardWOS:Morgado-Dias, F-
dc.contributor.wosstandardWOS:Ravelo-Garcia, AG-
dc.date.coverdate2019en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,796
dc.description.jcr4,774
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

3
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

6
checked on Mar 30, 2025

Page view(s)

77
checked on Feb 3, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.