Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/60049
DC FieldValueLanguage
dc.contributor.authorParras, Juanen_US
dc.contributor.authorZazo, Santiagoen_US
dc.contributor.authorPérez Álvarez, Iván Alejandroen_US
dc.contributor.authorSanz Gonzalez, Jose Luisen_US
dc.date.accessioned2020-01-10T10:55:47Z-
dc.date.available2020-01-10T10:55:47Z-
dc.date.issued2019en_US
dc.identifier.issn1424-8220en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/60049-
dc.description.abstractIn recent years, there has been a significant effort towards developing localization systems in the underwater medium, with current methods relying on anchor nodes, explicitly modeling the underwater channel or cooperation from the target. Lately, there has also been some work on using the approximation capabilities of Deep Neural Networks in order to address this problem. In this work, we study how the localization precision of using Deep Neural Networks is affected by the variability of the channel, the noise level at the receiver, the number of neurons of the neural network and the utilization of the power or the covariance of the received acoustic signals. Our study shows that using deep neural networks is a valid approach when the channel variability is low, which opens the door to further research in such localization methods for the underwater environment.en_US
dc.languageengen_US
dc.relation.ispartofSensorsen_US
dc.sourceSensors [ISSN 1424-8220], v. 19(16), 3530en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherWireless networksen_US
dc.subject.otherNoise levelsen_US
dc.subject.otherAcoustic noiseen_US
dc.subject.otherPropagationen_US
dc.subject.otherUnderwateren_US
dc.titleModel Free Localization with Deep Neural Architectures by Means of an Underwater WSNen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s19163530en_US
dc.identifier.scopus85071282211-
dc.identifier.isi000484407200087-
dc.contributor.authorscopusid57191201746-
dc.contributor.authorscopusid6701549562-
dc.contributor.authorscopusid6603181795-
dc.contributor.authorscopusid57211294981-
dc.identifier.eissn1424-8220-
dc.identifier.issue16-
dc.relation.volume19en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid31489407-
dc.contributor.daisngid375878-
dc.contributor.daisngid2637073-
dc.contributor.daisngid1902589-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Parras, J-
dc.contributor.wosstandardWOS:Zazo, S-
dc.contributor.wosstandardWOS:Perez-Alvarez, IA-
dc.contributor.wosstandardWOS:Gonzalez, JLS-
dc.date.coverdateAgosto 2019en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,653
dc.description.jcr3,275
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Ingeniería de Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.orcid0000-0001-5990-8409-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNamePérez Álvarez,Iván Alejandro-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (1,05 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.