Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/60049
Título: | Model Free Localization with Deep Neural Architectures by Means of an Underwater WSN | Autores/as: | Parras, Juan Zazo, Santiago Pérez Álvarez, Iván Alejandro Sanz Gonzalez, Jose Luis |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Wireless networks Noise levels Acoustic noise Propagation Underwater |
Fecha de publicación: | 2019 | Publicación seriada: | Sensors | Resumen: | In recent years, there has been a significant effort towards developing localization systems in the underwater medium, with current methods relying on anchor nodes, explicitly modeling the underwater channel or cooperation from the target. Lately, there has also been some work on using the approximation capabilities of Deep Neural Networks in order to address this problem. In this work, we study how the localization precision of using Deep Neural Networks is affected by the variability of the channel, the noise level at the receiver, the number of neurons of the neural network and the utilization of the power or the covariance of the received acoustic signals. Our study shows that using deep neural networks is a valid approach when the channel variability is low, which opens the door to further research in such localization methods for the underwater environment. | URI: | http://hdl.handle.net/10553/60049 | ISSN: | 1424-8220 | DOI: | 10.3390/s19163530 | Fuente: | Sensors [ISSN 1424-8220], v. 19(16), 3530 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.