Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/60014
Campo DC Valoridioma
dc.contributor.authorRodríguez Esparragón, Dionisioen_US
dc.contributor.authorMarrero Betancort, Nereaen_US
dc.contributor.authorMarcello, Javieren_US
dc.contributor.authorHernandez-Leon, Santiagoen_US
dc.date.accessioned2019-12-30T13:13:11Z-
dc.date.available2019-12-30T13:13:11Z-
dc.date.issued2019en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/60014-
dc.description.abstractThe oceans cover most of the Earth surface, being therefore essential elements of the environmental balance of our planet. In this sense, the prediction of global change scenarios that may affect them is an issue of high scientific and social relevance. One of the elements that indicates the quality of the water is the concentration of Chlorophyll-a. It is well known that Chlorophyll-a is related to the sea surface temperature and other variables such as the presence of nutrients and wind. All of them have been monitored with remote sensing satellites for more than a decade ago. Thus, researchers have available temporary series of these data. In this work, the prediction of Chlorophyll-a concentration is addressed from data on sea surface temperature and the aerosol optical thickness. For this, a shallow neuronal network is designed and trained, whose performance is contrasted with other approaches. The results show that the tested methodology can be used to model predictors with the discussed climate variables.en_US
dc.languageengen_US
dc.relationAnálisis de Series Temporales de Parámetros Atmosféricos de Teledetección Poren_US
dc.source2019 International Conference on Engineering Applications, ICEA 2019 - Proceedings (8883506)en_US
dc.subject250616 Teledetección (Geología)en_US
dc.subject251001 Oceanografía biológicaen_US
dc.subject.otherOcean temperatureen_US
dc.subject.otherNeural networksen_US
dc.subject.otherSea surfaceen_US
dc.subject.otherTemperature sensorsen_US
dc.subject.otherTime series analysisen_US
dc.subject.otherCorrelationen_US
dc.titleChlorophyll-A estimation from remote sensing data of sea surface temperature and aerosol optical thickness through a shallow neural networken_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeconferenceObjecten_US
dc.relation.conference2019 International Conference on Engineering Applications, ICEA 2019en_US
dc.identifier.doi10.1109/CEAP.2019.8883506en_US
dc.identifier.scopus85075080161-
dc.contributor.authorscopusid56422496000-
dc.contributor.authorscopusid57211808247-
dc.contributor.authorscopusid6602158797-
dc.contributor.authorscopusid6701465678-
dc.identifier.issue8883506-
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.conferenceidevents121672-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorRodríguez Esparragón, Dionisio-
crisitem.event.eventsstartdate08-07-2019-
crisitem.event.eventsenddate11-07-2019-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Oceanografía Biológica y Cambio Global-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0002-4542-2501-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.orcid0000-0002-3085-4969-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameRodríguez Esparragón, Dionisio-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
crisitem.author.fullNameHernández León, Santiago Manuel-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.