Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/60013
Campo DC Valoridioma
dc.contributor.authorIbarrola-Ulzurrun, Edurneen_US
dc.contributor.authorDrumetz, Lucasen_US
dc.contributor.authorChanussot, Jocelynen_US
dc.contributor.authorMarcello, Javieren_US
dc.contributor.authorGonzalo Martin,Consueloen_US
dc.date.accessioned2019-12-30T13:03:45Z-
dc.date.available2019-12-30T13:03:45Z-
dc.date.issued2018en_US
dc.identifier.issn2158-6276en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/60013-
dc.description.abstractHyperspectral imagery (HSI) can significantly contribute to habitat monitoring which is essential to ecosystem management. Specifically, spectral unmixing in HSI is an important tool for habitat conservation status assessment. However, an issue found is the spectral variability of the endmembers that can be addressed by the Extended Linear Mixing Model (ELMM), which considers this spectral variability for obtaining accurate abundance maps. An analysis is performed in a mountainous ecosystem with high spectral variations. Classification maps are obtained from the abundance maps to assess the unmixing models. Results are very satisfactory, plausible abundances are estimated with accurate characterization of variability within the scene and overall accuracies over 83%are obtained. ELMM and Robust ELMM allow studying the features of each pixel, including additional information about characterization of mixed pixels, by considering spectral variability and being more robust to the absence ofpure pixels as well as to noise.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensingen_US
dc.sourceWorkshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing [ISSN 2158-6276], v. 2018-September (8747096)en_US
dc.subject250616 Teledetección (Geología)en_US
dc.subject.otherHSIen_US
dc.titleClassification using unmixing models in areas with substantial endmember variabilityen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.relation.conference9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2018-
dc.identifier.doi10.1109/WHISPERS.2018.8747096en_US
dc.identifier.scopus85073913807-
dc.identifier.isi000482659100046-
dc.contributor.authorscopusid57193098496-
dc.contributor.authorscopusid56690503500-
dc.contributor.authorscopusid6602159365-
dc.contributor.authorscopusid6602158797-
dc.contributor.authorscopusid36561411500-
dc.identifier.issue8747096-
dc.relation.volume2018-Septemberen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid5530081-
dc.contributor.daisngid2928419-
dc.contributor.daisngid31284691-
dc.contributor.daisngid702897-
dc.contributor.daisngid1398100-
dc.description.numberofpages4en_US
dc.identifier.eisbn978-1-7281-1581-8-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Ibarrola-Ulzurrun, E-
dc.contributor.wosstandardWOS:Drumetz, L-
dc.contributor.wosstandardWOS:Chanussot, J-
dc.contributor.wosstandardWOS:Marcello, J-
dc.contributor.wosstandardWOS:Gonzalo-Martin, C-
dc.date.coverdate2018en_US
dc.identifier.conferenceidevents121166-
dc.identifier.ulpgces
dc.description.sjr1,508
dc.description.jcr3,392
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0001-5062-7491-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameIbarrola Ulzurrun, Edurne-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
crisitem.author.fullNameGonzalo Martin,Consuelo-
crisitem.event.eventsstartdate23-09-2018-
crisitem.event.eventsenddate26-09-2018-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.