Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/58307
Título: Surgical aid visualization system for glioblastoma tumor identification based on deep learning and in-vivo hyperspectral images of human patients
Autores/as: Fabelo Gómez, Himar Antonio 
Halicek, Martin
Ortega Sarmiento, Samuel 
Zbigniew Szolna,Adam 
Morera Molina, Jesús Manuel 
Sarmiento Rodríguez, Roberto 
Marrero Callicó, Gustavo Iván 
Fei, Baowei
Coordinadores/as, Directores/as o Editores/as: Linte, Cristian A.
Fei, Baowei
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Brain Shift
Resection
Extent
Brain Tumor
Cancer Surgery, et al.
Fecha de publicación: 2019
Publicación seriada: Progress in Biomedical Optics and Imaging - Proceedings of SPIE 
Conferencia: Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling 
Resumen: Brain cancer surgery has the goal of performing an accurate resection of the tumor and preserving as much as possible the quality of life of the patient. There is a clinical need to develop non-invasive techniques that can provide reliable assistance for tumor resection in real-time during surgical procedures. Hyperspectral imaging (HSI) arises as a new, noninvasive and non-ionizing technique that can assist neurosurgeons during this difficult task. In this paper, we explore the use of deep learning (DL) techniques for processing hyperspectral (HS) images of in-vivo human brain tissue. We developed a surgical aid visualization system capable of offering guidance to the operating surgeon to achieve a successful and accurate tumor resection. The employed HS database is composed of 26 in-vivo hypercubes from 16 different human patients, among which 258,810 labelled pixels were used for evaluation. The proposed DL methods achieve an overall accuracy of 95% and 85% for binary and multiclass classifications, respectively. The proposed visualization system is able to generate a classification map that is formed by the combination of the DL map and an unsupervised clustering via a majority voting algorithm. This map can be adjusted by the operating surgeon to find the suitable configuration for the current situation during the surgical procedure.
URI: http://hdl.handle.net/10553/58307
ISBN: 9781510625495
ISSN: 1605-7422
DOI: 10.1117/12.2512569
Fuente: Progress in Biomedical Optics and Imaging - Proceedings of SPIE [ISSN 1605-7422], v. 10951, 1095110
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.