Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/58307
DC FieldValueLanguage
dc.contributor.authorFabelo Gómez, Himar Antonioen_US
dc.contributor.authorHalicek, Martinen_US
dc.contributor.authorOrtega Sarmiento, Samuelen_US
dc.contributor.authorZbigniew Szolna,Adamen_US
dc.contributor.authorMorera Molina, Jesús Manuelen_US
dc.contributor.authorSarmiento Rodríguez, Robertoen_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.contributor.authorFei, Baoweien_US
dc.contributor.editorLinte, Cristian A.-
dc.contributor.editorFei, Baowei-
dc.date.accessioned2019-12-10T17:24:35Z-
dc.date.available2019-12-10T17:24:35Z-
dc.date.issued2019en_US
dc.identifier.isbn9781510625495-
dc.identifier.issn1605-7422en_US
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/58307-
dc.description.abstractBrain cancer surgery has the goal of performing an accurate resection of the tumor and preserving as much as possible the quality of life of the patient. There is a clinical need to develop non-invasive techniques that can provide reliable assistance for tumor resection in real-time during surgical procedures. Hyperspectral imaging (HSI) arises as a new, noninvasive and non-ionizing technique that can assist neurosurgeons during this difficult task. In this paper, we explore the use of deep learning (DL) techniques for processing hyperspectral (HS) images of in-vivo human brain tissue. We developed a surgical aid visualization system capable of offering guidance to the operating surgeon to achieve a successful and accurate tumor resection. The employed HS database is composed of 26 in-vivo hypercubes from 16 different human patients, among which 258,810 labelled pixels were used for evaluation. The proposed DL methods achieve an overall accuracy of 95% and 85% for binary and multiclass classifications, respectively. The proposed visualization system is able to generate a classification map that is formed by the combination of the DL map and an unsupervised clustering via a majority voting algorithm. This map can be adjusted by the operating surgeon to find the suitable configuration for the current situation during the surgical procedure.en_US
dc.languageengen_US
dc.relation.ispartofProgress in Biomedical Optics and Imaging - Proceedings of SPIEen_US
dc.sourceProgress in Biomedical Optics and Imaging - Proceedings of SPIE [ISSN 1605-7422], v. 10951, 1095110en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherBrain Shiften_US
dc.subject.otherResectionen_US
dc.subject.otherExtenten_US
dc.subject.otherBrain Tumoren_US
dc.subject.otherCancer Surgeryen_US
dc.subject.otherHyperspectral Imagingen_US
dc.subject.otherIntraoperative Imagingen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherSupervised Classificationen_US
dc.subject.otherConvolutional Neural Network (Cnn)en_US
dc.subject.otherClassifieren_US
dc.titleSurgical aid visualization system for glioblastoma tumor identification based on deep learning and in-vivo hyperspectral images of human patientsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.relation.conferenceMedical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling-
dc.identifier.doi10.1117/12.2512569en_US
dc.identifier.scopus85068937866-
dc.identifier.isi000483683500035-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid56285163800-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid14032568700-
dc.contributor.authorscopusid35466252100-
dc.contributor.authorscopusid35609452100-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid7005499116-
dc.identifier.eissn1996-756X-
dc.description.firstpage35en_US
dc.relation.volume10951en_US
dc.investigacionCiencias de la Saluden_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid2096372-
dc.contributor.daisngid6051182-
dc.contributor.daisngid1812298-
dc.contributor.daisngid2864016-
dc.contributor.daisngid5142172-
dc.contributor.daisngid116294-
dc.contributor.daisngid506422-
dc.contributor.daisngid306847-
dc.description.notasSPIE Medical Imaging, 2019, San Diego, California, United Statesen_US
dc.description.numberofpages11en_US
dc.utils.revisionNoen_US
dc.contributor.wosstandardLinte, Cristian A.-
dc.contributor.wosstandardFei, Baowei-
dc.contributor.wosstandardWOS:Fabelo, H-
dc.contributor.wosstandardWOS:Halicek, M-
dc.contributor.wosstandardWOS:Ortega, S-
dc.contributor.wosstandardWOS:Szolna, A-
dc.contributor.wosstandardWOS:Morera, J-
dc.contributor.wosstandardWOS:Sarmiento, R-
dc.contributor.wosstandardWOS:Callico, GM-
dc.contributor.wosstandardWOS:Fei, BW-
dc.identifier.conferenceidevents121169-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR SIANI: Ingeniería biomédica aplicada a estimulación neural y sensorial-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-4843-0507-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameZbigniew Szolna,Adam-
crisitem.author.fullNameMorera Molina, Jesús Manuel-
crisitem.author.fullNameSarmiento Rodríguez, Roberto-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.event.eventsstartdate17-02-2019-
crisitem.event.eventsenddate19-02-2019-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

26
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

15
checked on Oct 13, 2024

Page view(s)

129
checked on Sep 7, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.