Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/58283
Título: | In-Vivo Hyperspectral Human Brain Image Database for Brain Cancer Detection | Autores/as: | Fabelo Gómez, Himar Antonio Ortega Sarmiento, Samuel Zbigniew Szolna,Adam Bulters, Diederik Piñeiro, Juan F. Kabwama, Silvester J-O'Shanahan, Aruma Bulstrode, Harry Bisshopp, Sara Kiran, B. Ravi Ravi, Daniele Lazcano, Raquel Madroñal, Daniel Sosa Pérez, Coralia de Las Nieve Espino, Carlos Marquez, Mariano Plaza Pérez, María de la Luz Camacho Galán,Rafael Carrera, David Hernandez, Maria Marrero Callicó, Gustavo Iván Morera Molina, Jesús Manuel Stanciulescu, Bogdan Yang, Guang Zhong Salvador Perea, Rubén Juarez, Eduardo Sanz, César Sarmiento Rodríguez, Roberto |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Hyperspectral imaging Cancer detection Biomedical imaging Medical diagnostic imaging Image databases |
Fecha de publicación: | 2019 | Proyectos: | HypErspectraL Imaging Cancer Detection (HELiCoiD) (CONTRATO Nº 618080) Identificación Hiperespectral de Tumores Cerebrales (Ithaca) |
Publicación seriada: | IEEE Access | Resumen: | The use of hyperspectral imaging for medical applications is becoming more common in recent years. One of the main obstacles that researchers find when developing hyperspectral algorithms for medical applications is the lack of specific, publicly available, and hyperspectral medical data. The work described in this paper was developed within the framework of the European project HELICoiD (HypErspectraL Imaging Cancer Detection), which had as a main goal the application of hyperspectral imaging to the delineation of brain tumors in real-time during neurosurgical operations. In this paper, the methodology followed to generate the first hyperspectral database of in-vivo human brain tissues is presented. Data was acquired employing a customized hyperspectral acquisition system capable of capturing information in the Visual and Near InfraRed (VNIR) range from 400 to 1000 nm. Repeatability was assessed for the cases where two images of the same scene were captured consecutively. The analysis reveals that the system works more efficiently in the spectral range between 450 and 900 nm. A total of 36 hyperspectral images from 22 different patients were obtained. From these data, more than 300 000 spectral signatures were labeled employing a semi-automatic methodology based on the spectral angle mapper algorithm. Four different classes were defined: normal tissue, tumor tissue, blood vessel, and background elements. All the hyperspectral data has been made available in a public repository. | URI: | http://hdl.handle.net/10553/58283 | ISSN: | 2169-3536 | DOI: | 10.1109/ACCESS.2019.2904788 | Fuente: | IEEE Access [ISSN 2169-3536], v. 7, p. 39098 - 39116 |
Colección: | Artículos |
Citas SCOPUSTM
115
actualizado el 10-nov-2024
Citas de WEB OF SCIENCETM
Citations
90
actualizado el 10-nov-2024
Visitas
66
actualizado el 24-sep-2022
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.