Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/57926
Campo DC Valoridioma
dc.contributor.authorColombo, S.en_US
dc.contributor.authorOrlando, S.en_US
dc.contributor.authorRodríguez, R.en_US
dc.contributor.authorEspinosa, G.en_US
dc.contributor.authorGonzález, M.en_US
dc.contributor.authorStehlé, C.en_US
dc.contributor.authorPeres, G.en_US
dc.date.accessioned2019-11-18T09:04:28Z-
dc.date.available2019-11-18T09:04:28Z-
dc.date.issued2019en_US
dc.identifier.issn0004-6361en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/57926-
dc.description.abstractModeling the dynamics of most astrophysical structures requires an adequate description of the interaction of radiation and matter. Several numerical (magneto-) hydrodynamics codes were upgraded with a radiation module to fulfill this request. However, those that used either the flux-limited diffusion (FLD) or the M1 radiation moment approaches are restricted to local thermodynamic equilibrium (LTE). This assumption may not be valid in some astrophysical cases. Aims. We present an upgraded version of the LTE radiation-hydrodynamics (RHD) module implemented in the PLUTO code, which we have extended to handle non-LTE regimes. Methods. Starting from the general frequency-integrated comoving-frame equations of RHD, we have justified all the assumptions that were made to obtain the non-LTE equations that are implemented in the module under the FLD approximation. An operator-split method with two substeps was employed: The hydrodynamics part was solved with an explicit method by the solvers that are currently available in PLUTO, and the non-LTE radiation diffusion and energy exchange part was solved with an implicit method. The module was implemented in the PLUTO environment. It uses databases of radiative quantities that can be provided independently by the user: The radiative power loss, and the Planck and Rosseland mean opacities. In our case, these quantities were determined from a collisional-radiative steady-state model, and they are tabulated as functions of temperature and density. Results. Our implementation has been validated through different tests, in particular, radiative shock tests. The agreement with the semi-analytical solutions (when available) is good, with a maximum error of 7%. Moreover, we have proved that a non-LTE approach is of paramount importance to properly model accretion shock structures. Conclusion. Our radiation FLD module represents a step toward a general non-LTE RHD modeling.en_US
dc.languageengen_US
dc.relation.ispartofAstronomy & astrophysics (Print)en_US
dc.sourceAstronomy and Astrophysics [ISSN 0004-6361], v. 631 (A41)en_US
dc.subject221113 Interacción de la radiación con los sólidosen_US
dc.subject.otherRadiationen_US
dc.subject.otherOpacityen_US
dc.subject.otherFlux-Limited Diffusionen_US
dc.subject.otherX-Ray-Emissionen_US
dc.subject.otherOptically Thinen_US
dc.subject.otherTurbulenceen_US
dc.subject.otherPlasmasen_US
dc.subject.otherRadiation: Dynamicsen_US
dc.subject.otherHydrodynamicsen_US
dc.titleNon-LTE radiation hydrodynamics in PLUTOen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1051/0004-6361/201935991en_US
dc.identifier.scopus85074455466-
dc.identifier.isi000498951100001-
dc.contributor.authorscopusid57191658595-
dc.contributor.authorscopusid57191658595-
dc.contributor.authorscopusid7005772573-
dc.contributor.authorscopusid56314921800-
dc.contributor.authorscopusid55285592600-
dc.contributor.authorscopusid57211589195-
dc.contributor.authorscopusid7003944992-
dc.contributor.authorscopusid7102323854-
dc.identifier.eissn1432-0746-
dc.identifier.issueA41-
dc.relation.volume631en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid5980752-
dc.contributor.daisngid1786068-
dc.contributor.daisngid165268-
dc.contributor.daisngid799688-
dc.contributor.daisngid13599639-
dc.contributor.daisngid32002316-
dc.contributor.daisngid28128354-
dc.contributor.daisngid23577-
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Colombo, S-
dc.contributor.wosstandardWOS:Ibgui, L-
dc.contributor.wosstandardWOS:Orlando, S-
dc.contributor.wosstandardWOS:Rodriguez, R-
dc.contributor.wosstandardWOS:Espinosa, G-
dc.contributor.wosstandardWOS:Gonzalez, M-
dc.contributor.wosstandardWOS:Stehle, C-
dc.contributor.wosstandardWOS:Peres, G-
dc.date.coverdateOctubre 2019en_US
dc.identifier.ulpgcen_US
dc.description.sjr2,174
dc.description.jcr5,636
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUNAT: Interacción Radiación-Materia-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IUNAT: Interacción Radiación-Materia-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0002-8326-3169-
crisitem.author.orcid0000-0002-2317-7277-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.fullNameRodríguez Pérez, Rafael-
crisitem.author.fullNameEspinosa Vivas, Guadalupe-
Colección:Artículos
miniatura
PDF
Adobe PDF (568,34 kB)
Vista resumida

Citas SCOPUSTM   

4
actualizado el 21-abr-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 25-feb-2024

Visitas

121
actualizado el 23-mar-2024

Descargas

128
actualizado el 23-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.