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ABSTRACT

Context. Modeling the dynamics of most astrophysical structures requires an adequate description of the interaction of radiation and
matter. Several numerical (magneto-) hydrodynamics codes were upgraded with a radiation module to fulfill this request. However,
those that used either the flux-limited diffusion (FLD) or the M1 radiation moment approaches are restricted to local thermodynamic
equilibrium (LTE). This assumption may not be valid in some astrophysical cases.
Aims. We present an upgraded version of the LTE radiation-hydrodynamics (RHD) module implemented in the PLUTO code, which
we have extended to handle non-LTE regimes.
Methods. Starting from the general frequency-integrated comoving-frame equations of RHD, we have justified all the assumptions
that were made to obtain the non-LTE equations that are implemented in the module under the FLD approximation. An operator-split
method with two substeps was employed: the hydrodynamics part was solved with an explicit method by the solvers that are currently
available in PLUTO, and the non-LTE radiation diffusion and energy exchange part was solved with an implicit method. The module
was implemented in the PLUTO environment. It uses databases of radiative quantities that can be provided independently by the
user: the radiative power loss, and the Planck and Rosseland mean opacities. In our case, these quantities were determined from a
collisional-radiative steady-state model, and they are tabulated as functions of temperature and density.
Results. Our implementation has been validated through different tests, in particular, radiative shock tests. The agreement with the
semi-analytical solutions (when available) is good, with a maximum error of 7%. Moreover, we have proved that a non-LTE approach
is of paramount importance to properly model accretion shock structures.
Conclusion. Our radiation FLD module represents a step toward a general non-LTE RHD modeling.
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1. Introduction

The description of fluid motion in many astrophysical systems
requires considering the effects of radiation through its momen-
tum and energy exchanges with matter, which are described by
the radiation hydrodynamics (RHD) equations. Examples of rel-
evant systems include star formation structures (e.g., Krumholz
et al. 2009; Commerçon et al. 2011a; Vaytet et al. 2012, 2013a;
Davis et al. 2014; Skinner & Ostriker 2015; Raskutti et al. 2016),
protoplanetary disks (e.g., Flock et al. 2013, 2017), accretion
flows around young stellar objects such as T Tauri stars (Costa
et al. 2017; Colombo et al. 2019; de Sá et al. 2019), and accretion
around black holes (e.g., Hirose et al. 2009; Jiang et al. 2014). In
all these cases, radiation is coupled with matter from the dynam-
ical and energetic points of view.

A direct coupling of the radiation effects to the hydrody-
namic equations or even the magnetohydrodynamics equations
(RMHD) requires solving at each step the radiative transfer
equation (RTE), and in non-local thermodynamic equilibrium

? The module is available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/631/A41 and upon request to
the first author.

(non-LTE) regimes, the kinetic equilibrium equations, in order
to infer the radiation four-force density vector that describes the
momentum and energy coupling between radiation and matter.
However, this is a challenge that still is far beyond the cur-
rent capabilities of computers. The main reason is that the RTE
is an integro-differential equation, whose unknown, the spe-
cific intensity, depends on seven variables in a 3D description
(e.g., Pomraning 1973; Mihalas & Mihalas 1984; Castor 2004;
Hubeny & Mihalas 2014). Fully solving the 3D radiative trans-
fer equation itself requires a dedicated approach (e.g., Ibgui et al.
2013) that can be used to generate synthetic spectra without cou-
pling to hydrodynamic evolution.

A workaround is to directly solve the equations that
involve the radiation moments. These are obtained from angu-
lar moments of the RTE. This approach entails the creation of a
hierarchy of moments, and necessitates the use of closure rela-
tions. The equations describing the conservation of mass, mat-
ter momentum, and matter energy are solved together with the
equations describing the conservation of radiation momentum
and radiation energy.

The most accurate of the radiation moment techniques is
the variable Eddington tensor (VET) method (Stone et al. 1992;
Gehmeyr&Mihalas1994;Gnedin&Abel2001;Hayes&Norman
2003; Hubeny & Burrows 2007; Jiang et al. 2012). The method
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has been applied to the total, or frequency-integrated, radiation
moment equations. The Eddington tensor is defined as the ratio of
the radiation pressure to the radiation energy. The method consists
of solving the moment equations and assumes that the Eddington
tensor is known. When the structure of the medium is determined,
the Eddington tensor is updated by solving the RTE with the short-
characteristics method (Davis et al. 2012). Despite its good preci-
sion, this method is very costly from the computational point of
view.

Another technique, less accurate than the VET method, but
much cheaper from the computational point of view, is the so-
called M1 approximation (Levermore 1984; Dubroca & Feugeas
1999). The difference with the VET method for the total radia-
tion moment equations is that the Eddington tensor is provided
by an analytical closure relation; we do not solve the RTE. The
M1 method has been implemented in several multidimensional
RHD or RMHD codes, not only in the frequency-integrated
approach (HERACLES: González et al. 2007, ATON: Aubert
& Teyssier 2008, RAMSES: Rosdahl et al. 2013, ATHENA:
Skinner & Ostriker 2013, PLUTO: Melon Fuksman & Mignone
2019), but also in the multigroup approach (HERACLES: Vaytet
et al. 2013b, FORNAX: Skinner et al. 2019).

Finally, we mention the third radiation moment based tech-
nique: the flux-limited diffusion (FLD) approximation (Alme &
Wilson 1973; Levermore & Pomraning 1981). Although less
accurate than M1, especially in the optically thin regions, it is
the most widely used method in the R(M)HD codes because it
is the simplest, most robust, and most efficient method in terms
of computational cost, and it provides very good results in flows
where optically thick regions are of paramount importance. The
difference with M1 is that the radiation flux equation is not solved;
instead, the comoving-frame (also known as the fluid frame; i.e.,
the frame moving with the macroscopic velocity of the fluid) radi-
ation flux is determined, through the Fick law, as a quantity that
is antiparallel to the gradient of the radiation energy density, and
that recovers through an ad hoc function (the flux limiter), the
correct relations between flux and energy in the two asymptotic
regimes, the free-streaming and the (static or dynamic) diffusion
regime. The FLD method has been implemented in many mul-
tidimensional RHD or RMHD codes in astrophysical contexts,
in the frequency-integrated approach (ZEUS: Turner & Stone
2001, ORION: Krumholz et al. 2007, V2D: Swesty & Myra 2009,
NIRVANA: Kley et al. 2009, RAMSES: Commerçon et al. 2011b,
CASTRO: Zhang et al. 2011, PLUTO: Kolb et al. 2013; Flock
et al. 2013), and in the multigroup approach (CRASH: van der
Holst et al. 2011, CASTRO: Zhang et al. 2013, FLASH: Klassen
et al. 2014, RAMSES: González et al. 2015).

All these R(M)HD codes that use the M1 or the FLD approx-
imations are restricted to the local thermodynamic equilibrium
(LTE) approximation. While the LTE regime is a good approx-
imation in the optically thick parts of a flow where densities
are high enough, it can no longer be advocated in optically thin
parts, such as in the post-shock region of an accretion column
(e.g., Ardila 2007). It is therefore important to become inde-
pendent of the restrained LTE assumption, and to develop more
general RHD algorithms that are capable of handling a non-
LTE regime, while the LTE regime could just be a particular
case to which the non-LTE regime would tend in parts of a
flow that would have appropriate density and temperature con-
ditions. We here present an extended version of the radiation
module for PLUTO that was originally developed by Kolb et al.
(2013) in the LTE approximation, using the FLD method with
the frequency-integrated comoving-frame radiation quantities.
We have expanded the capabilities of this module, so that it can

now allow for non-LTE regimes. We have adopted an implicit
scheme to couple the gas and radiation energy exchange after
linearization of a non-LTE radiative emission function, as imple-
mented for a line emission function in ORION (Cunningham
et al. 2011; Krumholz et al. 2011, 2012).

The paper is structured as follows: in Sect. 2 we introduce the
full system of equations to describe the radiation hydrodynam-
ics. We justify all the assumptions we use, and we present the
approximated equations that are solved by the code. In Sect. 3
we explain the theoretical model we used to generate the opac-
ity and the radiative power-loss databases used by our module.
In Sect. 4 we explain the numerical implementation used in the
code. In Sect. 5 we validate the modifications made in the code
through some test cases. In Sect. 6 we compare the two radiative
shock structures we obtained by letting a given flow evolve in a
forced LTE regime and in a non-LTE regime. Finally, we draw
our conclusions in Sect. 7.

2. Equations

The originality of our radiation module coupled to the 3D mag-
netohydrodynamics (MHD) code PLUTO lies in the fact that it
considers the non-LTE radiation regime: we have removed the
LTE assumption that is commonly adopted in radiation hydrody-
namics implementations. Several RHD modules and codes exist
and are explained in the literature, with a wide variety of approx-
imations and numerical models. It therefore appeared to be use-
ful to us to start from the basic general physical RHD equations,
formulated in the comoving frame, then to clarify and list the
approximations that can be made in order to define the simpli-
fied equations that are solved by radiation modules. Our purpose
is to start from the most general RHD equations and to succes-
sively introduce step by step all the simplifying assumptions that
we have considered, until we obtained the RHD equations that
are solved by our module and were coupled to the MHD equa-
tions solved by PLUTO: these are synthesized in the next section
(Sect. 2.3). We also discuss each of these assumptions and their
consequence on the RHD modeling of a flow. Kolb et al. (2013)
have chosen to express the radiation quantities in the comoving
frame. We have followed their choice of reference frame.

2.1. General comoving-frame RHD equations

We start with the general comoving-frame frequency-integrated
RHD equations for a nonrelativistic flow, a nonviscous and non-
conducting fluid that is subject to external gravity, but has no
nuclear reactions. For all applications of our module throughout,
we always restrain ourselves to such flows. The equations are to
O (v/c) (e.g., Mihalas & Mihalas 1984)

∂ρ

∂t
+ ∇ · (ρ u) = 0, (1a)

∂

∂t
(ρ u) + ∇ · (ρ u ⊗ u + p I) = ρ g + G0, (1b)

∂

∂t

(
E + 1

2 ρ v
2
)

+ ∇ ·
[(
E + 1

2 ρ v
2 + p

)
u
]

= ρ g · u (1c)

+ G0 · u + c G0
0. ∂E0

∂t + ∇ · F0 + u · ∂
∂t

(
F0
c2

)
+ ∇ · (E0 u) + P0 : ∇ u

+2
(

F0
c2

)
· a = −c G0

0,
(1d) ∂

∂t

(
F0
c2

)
+ ∇ · P0 + (u · ∇)

(
F0
c2

)
+

(
F0
c2 · ∇

)
u

+ (∇ · u)
(

F0
c2

)
+

∂P0
∂t

u
c2 + 1

c2 (P0 a + E0 a) = −G0.
(1e)
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Equations (1a)–(1c) describe the conservation of mass (con-
tinuity equation), matter momentum, and total energy of mat-
ter, respectively. Equations (1d) and (1e) describe the total, or
frequency-integrated, radiation energy conservation and radia-
tion momentum conservation, respectively.

We use the following notations: ρ is the mass density, u is the
fluid (macroscopic) velocity, a ≡ ∂u/∂t is the local fluid accel-
eration, p is the matter pressure, g is the external gravity, and E

is the matter internal energy density. In our approach, all radia-
tion quantities are considered in the comoving frame. Following
Mihalas & Mihalas (1984), we denote them with a subscript “0”.
G0

0 and G0 are the time component and the space components of
the radiation four-force density vector Gα

0 ≡
(
G0

0,G0

)
, respec-

tively, and are defined by (Mihalas & Mihalas 1984)

G0
0 (r, t) ≡

1
c

∫ ∞

0
dν0

∮
4π

(χ0 I0 − η0) dΩ0, (2a)

G0 (r, t) ≡
1
c

∫ ∞

0
dν0

∮
4π

(χ0 I0 − η0) n0 dΩ0, (2b)

where I0 (r, t; n0, ν0) is the comoving-frame specific intensity
defined at position r, time t, for the comoving-frame direction
unit vector n0 and frequency ν0, and where χ0 (r, t; n0, ν0) and
η0 (r, t; n0, ν0) are the extinction coefficient (cm−1) and emission
coefficient or emissivity (erg cm−3 s−1 sr−1 Hz−1), respectively,

χ0 (r, t; n0, ν0) = κth
0 (r, t; n0, ν0) + κsca

0 (r, t; n0, ν0) , (3a)

η0 (r, t; n0, ν0) = ηth
0 (r, t; n0, ν0) + ηsca

0 (r, t; n0, ν0) , (3b)

where κth
0 (r, t; n0, ν0), κsca

0 (r, t; n0, ν0), ηth
0 (r, t; n0, ν0), ηsca

0
(r, t; n0, ν0) are the comoving-frame thermal absorption coef-
ficient, scattering coefficient, thermal emission coefficient, and
scattering emission coefficient, respectively.

In addition, E0, F0, and P0 are the total comoving-frame
energy density, the radiation flux, and the radiation pressure:

E0 (r, t) ≡
1
c

∫ ∞

0

∮
4π

I0 (r, t; n0, ν0) dΩ0 dν0, (4a)

F0 (r, t) ≡
∫ ∞

0

∮
4π

I0 (r, t; n0, ν0) n0 dΩ0 dν0, (4b)

P0 (r, t) ≡
1
c

∫ ∞

0

∮
4π

I0 (r, t; n0, ν0) n0 ⊗ n0 dΩ0 dν0. (4c)

The radiation moment approach couples the three matter-
related conservation Eqs. (1a)–(1c), an equation of state (EOS)
for matter, p = p(ρ,T ), an equation for the internal energy of
matter, or caloric equation of state, E = E (ρ,T ), and the two
radiation moment Eqs. (1d) and (1e). This system needs to be
closed by relations that link the three radiation moments (cf.
Sect. 2.2.4).

2.2. Non-LTE approximate RHD equations

In this section we start from the RHD equations presented in
Sect. 2 and we go through all the assumptions made to obtain
the approximated RHD equations. Then, we analyze the relative
sizes of the terms present in the equations under different phys-
ical regimes. Finally, we present the final RHD set of equations
actually solved by the module where the negligible terms are
omitted.

2.2.1. The approximate radiation four-force density

Our objective is to determine the comoving-frame radiation four-
force density vector

(
G0

0,G0

)
(cf. Eq. (2a) and (2b)), without

having to calculate the specific intensity. We focus on G0
0. We

assume coherent and isotropic scattering in the comoving frame.
We can show (Mihalas & Auer 2001) that

ηsca
0 (r, t; ν0) = κsca

0 (r, t; ν0)
∮

4π
I0(r, t; n′0, ν0)

dΩ′0

4π
· (5)

Then, the scattering terms in Eq. (2a) cancel out. We also assume
isotropic thermal absorption κth

0 (r, t; ν0). Finally, we obtain

c G0
0 = c κ0E E0 − L0, (6)

where L0 is the total radiation emission per unit volume and time
(or radiative power loss),

L0 (r, t) ≡
∫ ∞

0
dν0

∮
4π
ηth

0 (r, t; n0, ν0) dΩ0, (7)

and where κ0E is the energy-weighted (or absorption) mean
opacity, which is defined in the comoving frame as follows:

κ0E ≡

∫ ∞
0 κth

ν0
Eν0 dν0∫ ∞

0 Eν0 dν0
, (8)

where we use the simplified notation κth
ν0

= κth
0 (r, t; ν0).

We focus on G0. We assume the additional assumption of
isotropic thermal emission ηth

0 (r, t; ν0). Then, the emission terms
vanish in Eq. (2b). We find

G0 =
1
c
�0F F0, (9)

where is the flux-weighted (or radiation momentum) mean
opacity, defined in the comoving frame as (Mihalas & Auer
2001)

�0F F0 =

∫ ∞

0
χv0 F0(ν0) dν0,

with

�0F =


χ(1)

0F 0 0
0 χ(2)

0F 0
0 0 χ(3)

0F

 ,

(10a)

(10b)

2.2.2. Approximate mean opacities

The mean opacities κ0E Eq. (8) and Eq. (10a) are not
known in advance because they depend on the unknown radia-
tion energy Eν0 and radiation flux Fν0 . Our objective is to provide
approximate expressions for these quantities.

When we consider an optically thick medium in the equilib-
rium diffusion regime, we know that (Mihalas & Mihalas 1984)

Eν0 =
4 π
c

Bν0

Fν0 = −
4 π

3 χν0

∇ Bν0 ,

(11a)

(11b)

where Bν0 = B (ν0,T0) is the Planck function at material temper-
ature T0. As a consequence, using Eq. (8),

κ0E = κ0P, (12)
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where κ0P is the Planck mean opacity, defined as

κ0P ≡

∫ ∞
0 κth

ν0
Bν0 dν0∫ ∞

0 Bν0 dν0
· (13)

From Eq. (11b), we find after frequency integration that

F0 = −
4π

3 χ0R
∇B0, (14)

where B0 = caRT 4
0/4π is the frequency-integrated Planck func-

tion (aR: radiation density constant), and where χ0R is the Rosse-
land mean opacity, defined as

1
χ0R

≡

∫ ∞
0

1
χν0

∂Bν0
∂T dν0∫ ∞

0
∂Bν0
∂T dν0

· (15)

In the equilibrium diffusion regime, relations (6) and (9) can be
replaced by

c G0
0 = c κ0P E0 − L0

G0 =
1
c
χ0R F0.

(16a)

(16b)

We consider now the optically thin regime. In this case,
Fν0 → cEν0 (Mihalas & Mihalas 1984; Krumholz et al. 2007).
Then, we have χ(i), i=1,3

0F → (κ0E + a scattering term). When we
consider Thomson scattering by free electrons of density ne,
for instance, with a (frequency-independent) cross section σe,
we have χ(i), i=1,3

0F → κ0E + σe ne. We show (Mihalas & Miha-
las 1984) that in this optically thin regime, and assuming LTE
thermal emission (Kirchhoff’s law), the Planck mean κ0P is the
appropriate mean to use in order to best approximate G0

0. When
we neglect scattering, we could under the LTE thermal emission
assumption adopt in optically thin regime, χ(i), i=1,3

0F = κ0E = κ0P.
However, this assumption is not physically consistent because in
an optically thin medium, we are in a non-LTE regime. More-
over, in our approach, we do not assume LTE a priori. As a
result, we choose not to set χ(i)

0F = κ0P in the optically thin regime
because there is no reason for such a specification to improve the
accuracy.

In conclusion, we first approximate κ0E with the Planck mean
κ0P; second, we consider the flux spectrum to be the same in each
direction, and then we replace the tensor with a scalar χ0F
that we approximate with the Rosseland mean χ0R. We use the
approximate expressions (16a) and (16b) to calculate the com-
ponents G0

0 and G0 of the radiation four-force density vector. In
this way, we follow the idea of Krumholz et al. (2007) of giving
accuracy priority to optically thick parts of the flow. The Planck
mean opacity κ0P, the Rosseland mean opacity χ0R, and the total
radiation emission, or radiative losses, L0, have been tabulated as
functions of density and temperature for a solar composition of
the plasma assuming a non-LTE regime (Rodríguez et al. 2018).
A summary of the adopted physical assumptions is provided in
Sect. 3.

We note that our radiation module never assumes LTE a pri-
ori, but always considers from the outset the non-LTE equations.
If at a given time and position, the properties of the simulated
medium are such that the LTE conditions prevail, then the calcu-
lations will provide the same results as would be obtained from
LTE equations: c G0

0 −−−→LTE
c κ0P E0 − κ0P 4 π B0.

Within the above approximations, we can rewrite the sys-
tem (1a)–(1e) as follows:{
∂ρ

∂t
+ ∇ · (ρ u) = 0, (17a)

{
∂

∂t
(ρ u) + ∇ · (ρ u ⊗ u + p I) = ρ g +

1
c
χ0R F0, (17b)


∂

∂t

(
E + 1

2 ρ v
2
)

+ ∇ ·
[(
E + 1

2 ρ v
2 + p

)
u
]

= ρ g · u

+
1
c
χ0R F0 · u + c κ0P E0 − L0 ,

(17c)
∂E0

∂t
+ ∇ · F0 + u ·

∂

∂t

(
F0

c2

)
+ ∇ · (E0 u) + P0 : ∇ u

+ 2
(

F0

c2

)
· a = L0 − c κ0P E0,

(17d)



∂

∂t

(
F0

c2

)
+ ∇ · P0 + (u · ∇)

(
F0

c2

)
+

(
F0

c2 · ∇

)
u

+ (∇ · u)
(

F0

c2

)
+
∂P0

∂t
u

c2 +
1
c2 (P0 a + E0 a)

= −
1
c
χ0R F0.

(17e)

2.2.3. Scaling of terms in the radiation moment equations

The orders of magnitude of the terms involved in the LTE total
radiation moment equations have been evaluated in the comoving-
frame equations (Mihalas & Mihalas 1984; Stone et al. 1992), and
inthemixed-frameequations(Mihalas&Mihalas1984;Krumholz
et al. 2007; Skinner & Ostriker 2013). We here apply the same
approach to the non-LTE equations.

Three asymptotic physical regimes. We summarize the char-
acteristics of the three asymptotic physical regimes, as classified
by Mihalas & Mihalas (1984) and used by Krumholz et al. (2007)
and Skinner & Ostriker (2013). We denote by ` the characteristic
structural length at a given position and in a given direction in the
flow, and λp(ν0)≡ 1/χ0(ν0) the photon mean free path (distance
traveled by a photon before it is thermally absorbed or scattered).
The optical depth at the distance ` in the flow at frequency ν0
is τ(ν0)≡ χ0(ν0) `= `/λp(ν0). We distinguish the free-streaming
regime in an optically thin medium (τ(ν0)� 1), where a photon
can move freely in the medium at the speed of light, and the dif-
fusion regime in an optically thick medium (τ(ν0)� 1), where a
photon travels one free path between interactions (thermal absorp-
tion or scattering) with matter. In the diffusion case, we distinguish
two subcases. The first is the static diffusion regime for media with
no or low enough velocity. Photons that are trapped in the mate-
rial diffuse through a random walk process. The second subcase is
the dynamic diffusion regime for media with high enough veloc-
ity. Photons that are also trapped in the material can be advected
by the material motion faster than they can diffuse. The distinc-
tion between these two subcases in an optically thick medium
can be quantified by appropriate parameters (Mihalas & Klein
1982; Mihalas & Mihalas 1984; Krumholz et al. 2007; Skinner &
Ostriker 2013). We introduce the fluid-flow timescale tf ≡ `/vf ,
the typical time for a fluid particle to cross a distance ` at charac-
teristic velocity vf , the diffusion timescale td ≡ `2/cλp, the typical
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Table 1. Relative sizes of terms in the comoving-frame radiation energy Eq. (17d)
(
erg cm−3 s−1

)
.

Radiation energy ∂E0
∂t ∇ · F0 u · ∂

∂t

(
F0
c2

)
∇ · (E0 u) P0 : ∇ u 2 F0 ·

a
c2 − c G0

0 Normalization
(tag) (a) (b) (c) (d) (e) (f) (g)

Free streaming tr ∼ `
c 1 1 β β β β2 L0

tr
E0

(→
LTE

τ) ×
(

E0
tr

)
rank 1 1 2 2 2 3 1

Static diffusion td ∼ `2

c λp
1 1 β

τ
βτ βτ β2 1 ×

(
E0
td

)
td � tf rank 1 1 3 2 2 4 1

Dynamic diffusion tf ∼ `
v

1 1
βτ

β
τ

1 1 β
τ

1 ×
(

E0
tf

)
tf � td rank 1 2 3 1 1 3 1

time for a photon to cross a distance ` through a random walk com-
posed of steps of length λp (mean free path) covered at the speed
of light (Mihalas & Mihalas 1984). The corresponding character-
istic photon diffusion velocity is vd ≡ `/td. We can then quantita-
tively express the physical distinction, discussed above, between
the static diffusion regime, vd � vf (equivalent to td � tf), and
the dynamic diffusion regime, vf � vd (equivalent to tf � td). We
introduce a characteristic β ≡ vf/c � 1 (nonrelativistic flow). In
this way, we can synthesize the quantitative classification of the
three asymptotic regimes as follows (Krumholz et al. 2007):

free streaming: τ � 1

diffusion: τ � 1 static: β�
1
τ

dynamic: β�
1
τ
,

(18a)

(18b)

(18c)

where τ(νO) is the monochromatic optical depth as defined
above. We extend this classification to the frequency-integrated
optical depth.

Relative sizes of the terms. We analyze the relative sizes of
the terms of the comoving-frame radiation moment Eqs. (17d)
and (17e) by evaluating the order of magnitude of the evolu-
tion of each term on the characteristic structural length `. We
introduced above the characteristic times for a photon to cross
`: the diffusion timescale td in a static diffusion regime, and the
fluid-flow timescale tf in a dynamic diffusion regime. In a free-
streaming regime, the characteristic time for a photon to cross `
is the radiation-flow timescale tr ≡ `/c.

The three total radiation moments, E0, F0, and P0 can be
linked in the three asymptotic regimes described above. We show
that (Mihalas & Mihalas 1984) in the free streaming regime,

free streaming


F0

β�1
−−−→
τ�1

c E0 n0 + O(β)

P0
β�1
−−−→
τ�1

E0 n0 ⊗ n0 + O(β).

(19a)

(19b)

We also show that (Mihalas & Mihalas 1984) in either the static
or dynamic first-order equilibrium diffusion regime,

diffusion (static or dynamic)


F0 = −

c
χ0R
∇ · P0

P0 =
1
3

E0 I.

(20a)

(20b)

In addition, within the second-order equilibrium diffusion
approximation (Mihalas & Mihalas 1984; Castor 2004), the

comoving-frame radiation energy E0 has the following orders
of magnitude in the static and the dynamic diffusion regime:

diffusion


E0

static
∼

diffusion

4 π B0

c

1 ± (
1
τ

)2
E0

dynamic
∼

diffusion

4 π B0

c

[
1 ±

(
β

τ

)]
,

(21a)

(21b)

using the results above, we can now estimate the orders of mag-
nitude of each term of Eqs. (17d) and (17e). We globally fol-
low the usual approaches described in Mihalas & Klein (1982),
Mihalas & Mihalas (1984), Stone et al. (1992), Krumholz et al.
(2007) and Skinner & Ostriker (2013). As in Krumholz et al.
(2007) and Skinner & Ostriker (2013), we adopt the charac-
teristic length ` in the three asymptotic regimes for the fluid
and radiation quantities. We adopt the characteristic timescale
tf for the fluid quantities. We adopt the following charac-
teristic timescales for the radiation quantities: tr in the free-
streaming regime, td in the static diffusion regime, and tf in
the dynamic diffusion regime. The spatial derivatives are char-
acterized by 1/`. The time derivatives are characterized by
1/(characteristic timescale).

Tables 1 and 2 display the relative scaling of each term in
Eqs. (17d) and (17e), respectively. In each asymptotic regime,
the normalization parameter is indicated in the last column. We
also sorted in each regime the terms according to their relative
orders of magnitude, from the largest (rank 1) to the smallest
magnitude (ranks 3 or 4). The tables show that the terms with
acceleration ( (f) in Table 1, and (g) and (h) in Table 2) are from
one to three orders of magnitude smaller than the leading terms.
They can therefore be always safely neglect, as has been stated
by Mihalas & Mihalas (1984). Moreover, the terms that account
for the time derivative of the radiation momentum ((c) in Table 1)
and of the radiation pressure ((f) in Table 2) are from one to two
orders of magnitude smaller than the leading terms. They can
also always safely be neglected. In Table 1 the relative order of
magnitude of the radiation energy source – sink term, − c G0

0,
cannot be estimated a priori in non-LTE (it is τ in LTE). Its rank
is therefore considered to be one by default. Finally, in Table 2,
the terms (c), (d), and (e) are from one to two orders of mag-
nitude smaller than the leading terms. We can therefore neglect
them to obtain a solution valid to O(1).

Radiation moment equations to O(1). The discussion above
on the orders of magnitude suggests that if we keep only the
terms that are leading in at least one of the three asymptotic
regimes, then the total non-LTE radiation moment equations
are

A41, page 5 of 14



A&A 631, A41 (2019)

Table 2. Relative sizes of terms in the comoving-frame radiation momentum Eq. (17e)
(
dyn cm−3

)
.

Radiation momentum ∂
∂t

( F0
c2

)
∇ · P0 (u · ∇)

( F0
c2

) ( F0
c2 · ∇

)
u (∇ · u)

( F0
c2

)
∂P0
∂t
u

c2
1
c2 (P0 a) 1

c2 (E0 a) −G0 Normalization
(tag) (a) (b) (c) (d) (e) (f) (g) (h) (i)

Free streaming tr ∼ `
c 1 1 β β β β β2 β2 τ ×

( F0
c `

)
rank 1 1 2 2 2 2 3 3 > 1

Static diffusion td ∼ `2

c λp
1
τ2 1 β

τ
β
τ

β
τ

β
τ β2 β2 1 ×

(
F0

c λp

)
td � tf rank 2 1 3 3 3 3 4 4 1

Dynamic diffusion tf ∼ `
v

β
τ 1 β

τ
β
τ

β
τ β2 β2 β2 1 ×

(
F0

c λp

)
tf � td rank 3 1 3 3 3 2 2 2 1

∂E0

∂t
+ ∇ · F0 + ∇ · (E0 u) + P0 : ∇ u = L0 − c κ0P E0, (22a)

∂

∂t

(
F0

c2

)
+ ∇ · P0 = −

1
c
χ0R F0. (22b)

We note that if we wish to solve the radiation moment equa-
tions to the next order, that is, by keeping the terms that are
O(β) relative to the leading terms, we need to add term (c) from
Table 1 in the radiation energy equation and terms (c), (d), (e),
and (f) from Table 2 in the radiation momentum equation.

2.2.4. Flux-limited diffusion approximation

To close the system, we apply the FLD approximation (Alme &
Wilson 1973). The FLD approach, which has been widely used
in many RHD codes (cf. Sect. 1 for a review) consists of replac-
ing the radiation momentum equation with the Fick law of diffu-
sion that links the comoving total radiation flux to the comoving
total radiation energy through a radiation diffusion coefficient K,
as written below:

F0 = −K ∇E0 with K ≡
c λ
χ0R

, (23)

where λ (not to be confused with the photon mean free path
λp(ν0) defined in Sect. 2.2.3) is the so-called flux limiter, a
dimensionless quantity that should be defined so that the rela-
tion between the radiation flux and the radiation energy is cor-
rect in the optically thin and optically thick asymptotic regimes.
In other words, we must choose λ so that{
λ→ 1/R in an optically thin medium
λ→ 1/3 in an optically thick medium

, (24)

where the dimensionless quantity R is defined as follows:

R ≡
|∇E0|

χ0R E0
∼

1
τ


−−−−−−−−−→
optically thin

∞

−−−−−−−−−−→
optically thick

0
. (25)

In this way, we recover the asymptotic relations between E0 and
F0, in an optically thin medium, Eq. (19a), and in an optically
thick medium, Eq. (20a). The flux limiter is then defined as
a function of R. Different functions are proposed in the litera-
ture. The following three suggested by Levermore & Pomraning
(1981) (Eq. (26a)), Minerbo (1978) (Eq. (26b)), and Kley (1989)
(Eq. (26c)), were implemented in PLUTO by Kolb et al. (2013):

λ(R) =
1
R

(
coth R −

1
R

)
(26a)

λ(R) =


2

3 +
√

9 + 12R2
0 ≤ R ≤

3
2

1

1 + R +
√

1 + 2R

3
2
< R < ∞

(26b)

λ(R) =


2

3 +
√

9 + 10R2
0 ≤ R ≤ 2

10

10R + 9 +
√

180R + 81
2 < R < ∞

. (26c)

Finally, a closure relation is required to relate the radiation
pressure to the radiation energy. The most commonly used rela-
tion (e.g., by Turner & Stone 2001; Krumholz et al. 2007; Zhang
et al. 2011, 2013) is provided by Levermore (1984),

P0 =
E0

2
[
(1 − f ) I + (3 f − 1) n0 ⊗ n0

]
, (27)

where f is the Eddington factor, a dimensionless quantity,
related to λ and R as follows:

f = λ + λ2R2


−−−−−−−−−→
optically thin

1

−−−−−−−−−−→
optically thick

1
3

, (28)

where the limits are inferred from Eqs. (24) and (25). Then, we
verify that Eq. (27) recovers the following asymptotic relations:
Eq. (19b) in an optically thin medium, and Eq. (20b) in an opti-
cally thick medium.

2.3. Non-LTE RMHD equations solved by PLUTO

We implemented in a module that is coupled to PLUTO the radi-
ation terms that account for a non-LTE RHD description of a
flow by expanding the LTE RHD equations (Kolb et al. 2013) to
the more general non-LTE regime. Because PLUTO is a MHD
code, we have thus enhanced its capabilities, so that it is now a
3D non-LTE RMHD code.

We use the RHD equations within the approximations
detailed throughout Sect. 2.2. The full set of 3D nonrelativistic
RMHD equations solved by PLUTO is based on the full MHD
equations (Mignone et al. 2007, 2012), and on Eqs. (17a)–(17c),
(22a), and (23). The system is written as{
∂ρ

∂t
+ ∇ · (ρ u) = 0, (29a)

∂

∂t
(ρ u) + ∇ ·

[
ρ u ⊗ u − B ⊗ B +

(
p + 1

2 B2
)
I
]

= ρ g + ∇ · �visc +
1
c
χ0R F0,

(29b)
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∂

∂t

(
E + 1

2 ρ v
2 + 1

2 B2
)

+ ∇ ·
[(
E + 1

2 ρ v
2 + 1

2 B2 + p + 1
2 B2

)
u − (u · B) B

]
= ρ g · u + ∇ ·

[
−Fc + �visc u − (η J) × B

]
+

1
c
χ0R F0 · u + c κ0P E0 − L0,

(29c)

{
∂E0

∂t
+ ∇ · F0 = L0 − c κ0P E0, (29d){

F0 = −

(
c λ
χ0R

)
∇E0, (29e){

∂B
∂t

+ ∇ · (u ⊗ B − B ⊗ u) = −∇ × (η J) , (29f){
p = ρ

kB T
µmH

, (EOS) (29g){
E =

p
γ − 1

= ρ
kB

(γ − 1) µmH
T, (caloric EOS) (29h)

where B is the magnetic field, λ is the flux limiter (defined in
Sect. 2.2.4), kB is the Boltzmann constant, γ is the ratio of spe-
cific heats, µ is the mean molecular weight, mH is the standard
mass of one atom of hydrogen, Fc is the conductive flux,
is the viscous tensor, η is the magnetic resistivity tensor, and
J ≡ ∇ × B is the current density (for more information on these
quantities, see Mignone et al. 2007, 2012; Orlando et al. 2008).

The opacities κ0P, χ0R, and the radiative losses L0 can be pro-
vided separately. In our case, we use databases that are precal-
culated as functions of density and temperature in a non-LTE
regime (cf. Sect. 2.2.2).

We note that an additional approximation is made in the radi-
ation energy Eq. (29d) solved by PLUTO. The terms ∇ · (E0 u)
and P0 : ∇ are missing, compared to Eq. (22a). They were
already missing in the LTE RHD version by Kolb et al. (2013,
cf. their Eq. (4)). Table 1 reveals that these two terms are lead-
ing terms only in the dynamic diffusion regime, but are of sec-
ond order in the static diffusion regime and in the free-streaming
regime. At this stage, our module therefore cannot be used in
the dynamic diffusion regime. We plan to implement these two
terms in a future upgraded version of our RHD module.

3. Non-LTE opacities and radiative power loss:
theoretical model

Our module needs the following input data at a given set of den-
sity and temperature (ρ,T ) and for a given composition of the
plasma: the radiation emission L0, the Planck mean opacity κ0P,
and the Rosseland mean opacity χ0R.

Databases have been generated by Rodríguez et al. (2018) in
a non-LTE regime, but also in the LTE regime. Our module uses
three tables (L0, k0P, and k0R) as functions of (ρ, T ) for a plasma
with solar-like abundances, where k0P and k0R are (cm2 g−1)

k0P ≡
κ0P

ρ

k0R ≡
χ0R

ρ
·

(30a)

(30b)

In this section we briefly summarize the features of the the-
oretical model, whose details are explained in Rodríguez et al.

(2018). We note that our module can read any other set of data
(L0, k0P, k0R) that would be provided by the user.

Plasma radiative properties depend on the plasma level pop-
ulations and atomic properties. We calculated the atomic quan-
tities of the different chemical elements of the multi-component
plasma, such as the relativistic energy levels, wave functions,
oscillator strengths and photoionization cross sections, with the
FAC code (Gu 2008), in which a fully relativistic approach
based on the Dirac equation is solved. The atomic calcula-
tions were carried out in the relativistic detailed configuration
account (Bauche et al. 1987). The atomic configurations selected
for each ion in the plasma mixture were those with energies
within twice the ionization energy of the ground configuration of
the ion.

The atomic level populations were obtained assuming that
the plasma is in steady state. This approach is valid when the
characteristic time of the most relevant atomic process in the
plasma is considerably shorter than the time associated with
changes in the plasma density and temperature, that is, the char-
acteristic time of the plasma evolution. When this criterion is
fulfilled, the atomic processes are fast enough to distribute the
atomic level populations in the plasma before the density and
temperature of the plasma change. This approach is commonly
used to obtain the atomic level populations in the plasma that are
required to calculate radiative property databases for radiation-
hydrodynamics simulations. In the steady-state approximation,
the population density of the atomic level i of the ion with charge
state ζ, denoted Nζi, is obtained by solving the set of rate equa-
tions that are implemented in a collisional-radiative steady-state
(CRSS) model, given by∑
ζ′ j

Nζ′ j(r, t)R+
ζ′ j→ζi −

∑
ζ′ j

Nζi(r, t)R−ζi→ζ′ j = 0. (31)

Two complementary equations have to be satisfied together
with Eq. (31). First, the requirement that the sum of all the
partial densities equals the total ion density, and second, the
charge neutrality condition in the plasma. In Eq. (31), R+

ζ′ j→ζi
and R−ζ′ j→ζi take into account all the atomic processes that con-
tribute to populating and depopulating the atomic configuration
ζi. The atomic processes included in the CRSS model were
collisional ionization (Lotz 1968) and three-body recombina-
tion, spontaneous decay (Gu 2008), collisional excitation (van
Regemorter 1962) and deexcitation, radiative recombination
(Kramers 1923), autoionization, and electron capture (Griem
1997). The rates of the inverse processes were obtained through
the detailed balance principle. In the simulations carried out in
this work, the plasma was assumed to be optically thin. The
effect of the plasma environment on the population of the atomic
levels was modeled through the depression of the ionization
potential or continuum lowering, which can reduce the number
of bound states that are available. The formulation developed
by Stewart & Pyatt (1966) was applied. In our CRSS model, the
ions were considered to be at rest. On the other hand, a Maxwell-
Boltzmann distribution for the free electrons was assumed when
we calculated the rates of the atomic processes. For electron
densities between 1011 and 1014 cm−3 and electron temperatures
lower than 200 eV, the electron mean free paths range between
3.33 × 105 and 25.8 cm (Rodríguez et al. 2018). This property
provides an estimation of the average volume needed for the free
electrons to thermalize. For the range of plasma conditions ana-
lyzed in this work, the Fermi-Dirac distribution is not necessary.
The CRSS model we described is implemented in the MIXKIP
code (Espinosa et al. 2017).
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As said before, we simulated a multicomponent plasma. The
chemical elements considered in the mixture were H, He, C, N,
O, Ne, Na, Mg, Al, Si, S, Ar, Ca, and Fe, and the solar-like abun-
dances provided by Asplund et al. (2009) were used. For a given
electron density and temperature, the CRSS model was solved
for each element without considering any atomic processes that
connect different chemical elements. However, they were cou-
pled through the common pool of free electrons because the
plasma level populations of each chemical element have to be
consistent with the common electron density. This fact ensures
the plasma neutrality (Klapisch & Busquet 2013).

After we obtained the atomic data and level populations,
the monochromatic absorption coefficient and emissivity of each
chemical element m, κm(ν), and jm(ν), where ν is the photon fre-
quency, were calculated using the RAPCAL code (Rodríguez
et al. 2008, 2010). Both coefficients include the bound-bound,
bound-free, and free-free contributions. The radiative transi-
tion rates were calculated in the electric dipole approximation
using the FAC code. The oscillator strengths included a cor-
rection to take configuration interaction effects into account
that are due to the mix between relativistic configurations
that belong to the same non-relativistic one. The photoion-
ization cross sections were calculated in the distorted wave
approach. Complete redistribution hypothesis was assumed for
the line profile, which included natural, Doppler, electron-impact
(Dimitrijevic & Konjevic 1987), and UTA broadenings (Bauche
et al. 1987). The line-shape function was applied with the
Voigt profile that incorporated all these broadenings. For the
free-free contributions, the Kramers semi-classical expression
for the inverse bremsstrahlung cross section was used (Rose
1992). In order to determine the opacity, k(ν), from the absorp-
tion coefficient, the scattering of photons was also taken into
account, and in RAPCAL, this was approximated using the
Thomson scattering cross section (Rutten 1995). The monochro-
matic opacities and emissivities of the mixture were obtained
from the weighted contributions of the different chemical
elements

k(ν) =
1
ρ

∑
m

Xm κm(ν) (32a)

j(ν) =
∑

m

Xm jm(ν). (32b)

where ρ is the mass density of the mixture. From the monochro-
matic opacities of the mixture, the Planck k0P and Rosseland k0R
mean opacities were calculated, as well as the radiative power
loss, or radiation emission, L0, from the monochromatic emis-
sivity. Figure 1 portrays maps of L0, k0P, and k0R versus free
electron density (cm−3) and temperature (K) in logarithmic scale
in a non-LTE regime, and in an LTE regime.

Both MIXKIP and RAPCAL codes have been successfully
tested with experimental results and numerical simulations for
plasmas of single elements that were included in the mixture
we analyzed here (Espinosa et al. 2017; Rodríguez et al. 2008,
2010), both in LTE and non-LTE, and for the plasma mixture
in LTE simulations (Rodríguez et al. 2018). A more detailed
explanation of both codes can be found in Rodríguez et al.
(2018).

4. Implementation of the radiation terms

We explain here how the radiative terms of the physical equa-
tions are implemented in the code. We have followed and
upgraded to the non-LTE case the techniques described for the

LTE regime in Kolb et al. (2013) (see also Commerçon et al.
2011b; van der Holst et al. 2011; Zhang et al. 2011, 2013).
We used an operator-split method. As detailed in this section,
advancing the variables during a time step is made in two sub-
steps, an explicit (Sect. 4.2), and an implicit step (Sect. 4.3).
The latter involves the radiation emission L0, which is an ana-
lytical function of temperature in LTE (L0 = k0P ρ c aR T 4:
cf. Sect. 2.2.2), but has no analytical expression in non-LTE,
and is stored in databases (cf. Sect. 3). Our original contri-
bution, with respect to the usual LTE implementations, con-
sists of handling this non-analytical radiation emission term in
the treatment of the implicit scheme, as explained below in
Sect. 4.3.

4.1. Reformulation of the equations

For the sake of simplicity, we removed from the full system
solved by PLUTO, Eqs. (29a)–(29h), the terms depending on the
magnetic field, and rewrote it in a simplified version for an invis-
cid fluid without heat-conduction, but subject to external gravity
(even though the following discussion can be applied to the full
RMHD system):

∂ρ

∂t
+ ∇ · (ρ u) = 0 (33a)

∂

∂t
(ρ u) + ∇ · (ρ u ⊗ u + p I) = ρ g +

ρ kR

c
F (33b)

∂

∂t

(
E + 1

2 ρ v
2
)

+ ∇ ·
[(
E + 1

2 ρ v
2 + p

)
u
]

= (33c)

ρ g · u +
ρ kR

c
F · u + kP ρ c E − L

∂E
∂t

+ ∇ · F = L − kP ρ c E (33d)

F = −
c λ
kR ρ
∇E (33e)

p = ρ
kB T
µmH

(33f)

E =
p

γ − 1
= ρ

kB

(γ − 1) µmH
T, (33g)

where we have omitted the subscript 0 in the radiation quantities
for clarity.

The above system contains 11 unknowns: 6 principal vari-
ables (ρ, u, p, and E) that are determined by solving the 6
Eqs. (33a)–(33d), and 5 variables (T,E , F) that can be inferred
from the 6 principal ones from the FLD relation (33e), the
EOS (33f), and the caloric EOS (33g).

At each time step ∆tn = tn+1 − tn, determined by the
CFL condition (Mignone et al. 2007), we advance the gas
and radiation variables from tn to tn+1 by solving the above
system in two consecutive substeps, as described below. We
denote as (ρn, un, pn, and En) and (T n,E n, and Fn) the values
of the variables at time tn, and

(
ρn+1, un+1, pn+1, and En+1

)
and(

T n+1,E n+1, and Fn+1
)

their values at time tn+1, after the two sub-
steps are completed.

4.2. Substep 1: explicit hydrodynamics

In this first substep, PLUTO solves the hyperbolic subsystem
made of Eqs. (33a)–(33c), but without the radiation source (also
known as source-sink) terms kP ρ c E − L in the gas energy
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Fig. 1. Total radiation emission (erg cm−3 s−1) (top panels), Planck opacities (cm2 g−1) (mid panels), and Rosseland opacities (cm2 g−1) (bottom
panels) in a non-LTE regime (left) and in an LTE regime (right). See Sect. 3 for more details.

Eq. (33c). The system to be solved is

substep 1



∂ρ

∂t
+ ∇ · (ρ u) = 0

∂

∂t
(ρ u) + ∇ · (ρ u ⊗ u + p I) = ρ g − λ∇E

∂

∂t

(
p

γ − 1
+ 1

2 ρ v
2
)
+

∇ ·

[(
p

γ − 1
+ 1

2 ρ v
2 + p

)
u

]
=

ρ g · u − λ u · ∇E,

(34a)

(34b)

(34c)

where we have introduced Eqs. (33e) and (33g) in (33b)
and (33c). A Godunov-type algorithm is applied, with several
possibilities of Riemann solvers (see Mignone et al. 2007 for
details).

We use an asterisk superscript to denote the quantities that
are obtained at the completion of this substep. Some of these
quantities have intermediate results that will be updated in the
next substep (Sect. 4.3). Starting from (ρn, un, and pn), PLUTO
determines (ρ∗, u∗, and p∗), the terms involving the radiation
energy density En that is in the source part of the solved sys-
tem, and is therefore not updated. The corresponding intermedi-
ate temperature is obtained from the EOS (33f):

T ∗ =
p∗

ρ∗ kB
µmH

· (35)

4.3. Substep 2: implicit radiation diffusion and source terms

In this second substep, we determine at time tn+1 the radiation
energy density En+1 and the gas temperature T n+1 by solving the
radiation energy Eq. (33d) and the gas energy Eq. (33c) with-
out any velocity term (we couple the gas internal energy density
evolution rate with the radiation source terms). The system to be
solved in non-LTE is

substep 2


∂E
∂t
− ∇ ·

(
cλ
ρ kR
∇E

)
= L − kP ρ c E

∂E

∂t
= kP ρ c E − L,

(36a)

(36b)

where the gas energy density E is directly related to the gas tem-
perature through the caloric equation of state (33g).

Because the timescales for radiation are much shorter than
timescales for hydrodynamics, time steps that would be inferred
from the CFL condition if applied to radiation would lead to
impracticable computations. Consequently, we use an implicit
scheme for solving the system of Eqs. (36a)–(36b), with the time
step ∆tn provided by the explicit hydrodynamics substep 1.

Because the timescales for radiation are much shorter than
timescales for hydrodynamics, time steps that would be inferred
from the CFL condition if applied to radiation would lead to
impracticable computations. Consequently, we use an implicit
scheme for solving the system of Eqs. (36a)–(36b), with the time
step ∆tn provided by the explicit hydrodynamics substep 1.

Starting from (En, ρ∗,T ∗), we obtain at the completion of
this substep,

(
En+1,T n+1

)
. The time discretization of Eqs. (36a)
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and (36b) is made according to the following implicit scheme:
En+1 − En

∆tn − ∇ ·
(
K∗ ∇En+1

)
= Ln+1 − k∗P ρ

∗c En+1

ρ∗ cV
T n+1 − T ∗

∆tn = k∗P ρ
∗c En+1 − Ln+1,

(37a)

(37b)

where while we relate E to ρ and T with (33g), we assume that
the mass density ρ is not modified by this implicit substep (fol-
lowing Commerçon et al. 2011b; Zhang et al. 2011, 2013, and
Kolb et al. 2013), and where

cV =
kB

(γ − 1) µmH

Ln+1 = L
(
ρn+1,T n+1

)
k∗P = kP (ρ∗,T ∗)
k∗R = kR (ρ∗,T ∗)

K∗ =
c λ(R∗)
k∗R ρ

∗
with R∗ =

|∇En|

ρ∗ k∗R En ·

(38a)

(38b)

(38c)
(38d)

(38e)

The radiation diffusion coefficient K, the flux limiter λ, and
the dimensionless quantity R are defined in Sect. 2.2.4.

The space discretization of Eq. (37a) is obtained from a
finite-volume method (now adapted to non-LTE regimes):

En+1
i jk − En

i jk

∆tn − hi jk(En+1,K∗) = Ln+1
i jk − k∗P i jk ρ

∗c En+1
i jk , (39a)

where

hi jk(En+1,K∗) ≡ ∇ ·
(
K∗ ∇En+1

)
(39b)

represents the discretized radiation diffusion term, a linear func-
tion of En+1 given by Eq. (14) of Kolb et al. (2013), and where
the indices i, j, and k identify the positions of the cell centers in
the 3D computational grid.

The radiation emission at time tn+1, Ln+1 (Eq. (38b)), is deter-
mined from a first-order Taylor expansion, starting from the state
(ρ∗,T ∗) obtained from substep 1:

Ln+1 = L∗ +

(
∂L
∂T

)∗ (
T n+1 − T ∗

)
+

XXXXXXXX

(
∂L
∂ρ

)∗ (
ρn+1 − ρ∗

)
with
L∗ = L (ρ∗,T ∗)(
∂L
∂T

)∗
=

(
∂L
∂T

)
(ρ∗,T ∗) ;

(
∂L
∂ρ

)∗
=

(
∂L
∂ρ

)
(ρ∗,T ∗) ,

(40a)

(40b)

(40c)

where we have struck out the term in mass density because we
have assumed that the mass density ρ is not modified by this
substep 2. Moreover, the dependence of the radiation emission L
on T is much higher than that on ρ (see Rodríguez et al. 2018 for
more details).

Using Eq. (40a) inside Eqs. (37b) and (39a), we obtain after
some algebra (we removed the subscripts i, j, and k from each
term for simplicity)

En+1 − En

∆tn = h(En+1,K∗) +
L∗ − k∗P ρ

∗c En+1

1 +
(

∆tn

ρ∗ cv

) (
∂L
∂T

)∗
T n+1 = T n +

(
∆tn

ρ∗ cv

)
1 +

(
∆tn

ρ∗ cv

) (
∂L
∂T

)∗ (
k∗P ρ

∗ c En+1 − L∗
)
.

(41a)

(41b)

Equation (41a) represents a linear system whose unknown is
the radiation energy density En+1

i jk , at time tn+1, and at all posi-
tions (i, j, k) in the computational domain. The system is solved
using the PETSc solver, which is already implemented in the
original version of the module; in addition, the boundary condi-
tions for the radiation energy density can be periodic, symmetric,
reflective, or with fixed values.

This linearization procedure of a radiative loss function cou-
pled to an implicit scheme was previously implemented by
Cunningham et al. (2011, cf. their Eqs. (7) and (8), to be com-
pared to our Eqs. (36b) and (36a), respectively). In their applica-
tion, the formation of star clusters, they use a tabulated function
that represents line emission (Cunningham et al. 2006) superim-
posed on the LTE opacity due to dust (Semenov et al. 2003). The
detailed system of equations, implemented in the ORION code
(Krumholz et al. 2007), is presented in Krumholz et al. (2011,
2012).

After we determine En+1, it is straightforward to calculate the
temperature T n+1 by simply applying formula (41b). Then, using
the approximation ρn+1 = ρ∗, we update the Rosseland opacity
kn+1

R , and then the flux limiter λ(Rn+1), therefore the radiation
contribution to the right-hand side of Eq. (34b) and (34c). We
also immediately obtain the pressure pn+1 from the EOS (33f),

pn+1 = ρn+1 kB

µmH
T n+1. (42)

The velocity u is not involved in the equations solved by this
substep 2. Then, un+1 = u∗. Finally, from the above quantities,
we can infer the gas energy E n+1 by applying Eq. (33g), and the
radiation flux Fn+1 by applying Eq. (33e).

5. Tests

To validate our implementation of the non-LTE equations in the
radiation module in PLUTO, we simulated some test cases, and
compared our solutions either to analytical or semi-analytical
results, when they exist, or when appropriate, to the LTE version
of the code. All the test cases present in the literature assume the
LTE regime. To have a direct comparison with these tests, we
always used our non-LTE discretization scheme (cf. Sect. 4.3),
but imposed the radiation emission (or radiative losses) L to be
equal to the LTE emission (L = kP ρ c aR T 4). These tests are
described below in Sects. 5.1 and 5.2.

The tests are 1D problems. Even though PLUTO works in
1D, 2D, or 3D, the radiation module was developed only in 3D.
To model the test cases, we therefore used quasi-1D domains,
which are cuboids with a length much longer than the width
or height. The tests were made only in Cartesian grid. Because
we did not change the geometrical terms in Eq. (41a), we did
not need to check the results using different grids. To compare
the results with Kolb et al. (2013), we used the solver based on
the PETSc library for all test cases, with the GMRES iteration
scheme and a block-Jacobi (bjacobi) preconditioner.

5.1. Radiation matter coupling

Our objective was to test the correctness of the implementation
of Eq. (36b), which couples the evolution of the matter (or gas)
internal energy E with the radiation source terms kP ρ c E − L.
This equation is solved with an implicit method, in substep 2 of
the operator-split scheme (cf. Sect. 4.3). In particular, this test
enabled us to verify our linearization procedure of the radiation
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emission L (Eq. (40a)), which results in the expression of the
temperature T n+1 versus T n (Eq. (41b)). Such a test was first
proposed by Turner & Stone (2001).

We wish to freeze the evolution of any other quantity but the
temperature (and, therefore, the gas internal energy). To do so,
we first built our test model as a static and uniform fluid that is
initially out of radiative equilibrium, and we suppressed exter-
nal gravity. Second, we assumed the radiation energy E to be
high enough compared to the gas internal energy for E to be
considered as a constant quantity during the energy exchange
between matter and radiation throughout the evolution process.
In this respect, the radiation flux, which is related to the gra-
dient of radiation energy through the FLD relation of Eq. (23),
is negligible, and the continuity, matter momentum, and radi-
ation energy equations (Eqs. (33a), (33b), and (33d)) become
irrelevant. The only remaining relevant equation to be solved
is the matter energy equation, Eq. (33c), but in the form of
Eq. (36b).

Even though we used our non-LTE discretization scheme
with the radiation emission (or radiative losses) quantity L in
the equations (Sect. 4.3), we set L to be equal to the LTE emis-
sion (L = kP ρ c aR T 4). In this way, Eq. (36b) can be recast as
the following ordinary differential equation:

dE
dt

= A

1 − (
E

Ef

)4
with the following two constants:
A = kP ρ c E

Ef =
ρ kB

(γ − 1) µmH a1/4
R

E1/4,

(43a)

(43b)

(43c)

Ef is the gas internal energy in the final radiative equilibrium
state.

5.1.1. Setup

For this test, we set the density ρ = 10−7 g cm−3, the radiation
energy density E = 1010 erg cm−3, the Planck1 mean opacity
ρ kP = 4×10−8 cm−1, the mean molecular weight µ = 0.6, and the
ratio of specific heats γ = 5/3. The domain consisted of a cuboid
whose length far exceeds the other two dimensions. In particu-
lar, the cuboid had a width and height of 3 cm, and a length of
100 cm. The grid consisted of 3 × 3 × 100 points. All the bound-
aries were periodic. For this test the hydrodynamic solver was
turned off.

The simulation started at t = 0 s with an initial time step of
δt = 10−20 s. After each step, the time step increased by 0.1%.
The test was performed using three different initial gas internal
energy densities E0 = (6.4× 103; 6.4× 107; 6.4× 108) erg cm−3.

5.1.2. Results

Figure 2 shows the comparison between the solution found
with our model (red dots) and with the semi-analytical refer-
ence model (black line) obtained by solving Eq. (43a) with
a fourth-order Runge-Kutta scheme (alternatively, a full ana-
lytical solution is provided by Swesty & Myra 2009), for
the three different initial energy radiation densities E0. The

1 The choice of the Rosseland mean opacity is irrelevant because it is
associated with the radiation flux that is negligible in our test; however,
for computational convenience, we also adopted ρ kR = 4 × 10−8 cm−1.
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Fig. 2. Coupling test with three different initial gas internal energy den-
sities. The black line represents the reference solution, and the orange
dots are the results obtained with the radiation module.

agreement between the two solutions is excellent for all the three
cases.

5.2. Radiative shocks

We tested our implementation of the full set of non-LTE radi-
ation hydrodynamics equations in PLUTO (Eqs. (33a)–(33g))
(without external gravity) by assessing the ability of the code to
reproduce the structure of a radiative shock. We simulated a sim-
ple shock case in a quasi-1D domain; this test follows from Ens-
man (1994). It is possible to compare some characteristic quan-
tities derived from the test, with analytical estimates (Mihalas &
Mihalas 1984). We compare our results with the original version
of the code.

5.2.1. Setup

For this test, we simulated an initially uniform fluid with a den-
sity ρ = 7.78 × 10−10 g cm−3 and temperature T = 10 K that
moved with a velocity v along the z-axis. We set the ratio of
specific heats γ = 7/5, and the mean molecular weight µ = 1,
in analogy to Ensman (1994). We imposed a constant opacity
kR × ρ = kP × ρ = 3.1 × 10−10 cm−1, and the initial radiation
energy density was set by the equation E = aRT 4. As in the
previous test case (Sect. 5.1), we imposed the radiative losses
L = kP ρ c aR T 4 (LTE radiation emission) and used our non-LTE
discretization scheme with L in the equations.

The computational domain had a width and height of 3.418×
107 cm, and a length (z-axis) of 7 × 1010 cm. Following Kolb
et al. (2013), we chose a grid composed of 4×4×2048 cells, the
Minerbo flux limiter (Eq. (26b) in Sect. 2.2.4), a Lax-Friedrichs
scheme, 0.4 as CFL (Courant-Friedrichs-Lewy) value, and a rel-
ative tolerance ε = 10−5 for the matrix solver. The lateral bound-
aries were periodic. In the direction of the fluid flow (z-axis), we
used a reflective boundary at the bottom of the domain (z = 0)
to generate the shock, and a zero-gradient condition at the top
(z = zmax = 7 × 1010 cm).

Moving from zmax to z = 0, the fluid impacts onto the reflec-
tive boundary, which generates a shock that propagates back
into the fluid. The fluid velocity is calculated with respect to
the computational domain, which is the physical frame of refer-
ence. The shock can be subcritical (low velocity) or supercritical
(high velocity) (Mihalas & Mihalas 1984). We simulated both
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Fig. 3. Gas temperature (red) and radiation temperature (blue) vs.
s = z − v t for the sub- (top panel) and supercritical (bottom panel)
shocks. The subcritical shock is shown at time t = 3.8 × 104 s and the
supercritical shock at t = 7.5 × 103 s.

cases: we set v = 6 × 105 cm s−1 to obtain a subcritical shock,
and v = 20 × 105 cm s−1 to obtain a supercritical shock.

5.2.2. Results

In order to compare our results with those obtained by Ensman
(1994) or Kolb et al. (2013), we introduced the quantity s =
z−v t. Figure 3 shows the gas temperature (red) and the radiation
temperature (blue), Trad = (E/aR)1/4, versus s for the subcritical
shock (top panel) and the supercritical shock (bottom panel). In
the supercritical shock the temperature after and before the shock
are equal, as expected.

In the case of a subcritical shock, some characteristic gas
temperatures can be estimated analytically (Mihalas & Miha-
las 1984): T−, the temperature immediately ahead of the shock
front; T+, the temperature immediately behind the shock front
(Zel’dovich spike: Zel’dovich & Raizer 1967); T2, the final equi-
librium post-shock temperature, reached after radiative cooling.
We have

T2 ≈
2 (γ − 1 u2

RG (γ + 1)2

T− ≈
γ − 1
ρ u RG

2σSB T 4
2

√
3

T+ ≈ T2 +
3 − γ
γ + 1

T−,

(44a)

(44b)

(44c)

Table 3. Comparisons of the characteristic temperatures of a subcritical
shock, T2, T− , T+ (Eqs. (44a)–(44c)) obtained from analytical estimates
from our non-LTE code and from the initial LTE code by Kolb et al.
(2013).

Analytical Our numerical Kolb et al. (2013) Deviation
estimate solution

T2 ≈865 K 817 K 816.6 K ≈5%
T− ≈315 K 332 K 331.9 K ≈5%
T+ ≈1075 K 1151 K 1147.1 K ≈7%

Notes. The last column shows the relative deviation between our numer-
ical solution and the analytical estimate.

where RG = kB/µmH is the perfect gas constant, σSB is the
Stefan-Boltzmann constant, and u is the velocity of the shock
relative to the upstream fluid.

Table 3 shows the comparison between our numerical solu-
tion, the analytical estimate, and the solution reported by Kolb
et al. (2013). Our numerical solution agrees very well with the
original version of the code. The relative deviation with respect
to the analytical estimate is no larger than 7%. Moreover, the
position and shape of the shocks are very well reproduced. We
can conclude that our modifications in the radiation module have
maintained the accuracy of the code.

6. LTE versus non-LTE radiative shocks

The purpose of this section is to show the crucial importance
of considering the appropriate regime (LTE or non-LTE) for
given physical conditions, in order to correctly model the struc-
ture and dynamics of a radiating fluid. This is because opacities
and radiation emissions can differ by several orders of magni-
tudes between the two regimes, as exemplified by Fig. 1. These
deviations can have a great effect on the momentum and energy
exchanges between matter and radiation and thus on the struc-
ture of the flow.

We modified the shock test from Ensman (1994), described
in Sect. 5.2, to have physical conditions quite similar to those
in accretion shocks in young stars (Sacco et al. 2008; Colombo
et al. 2019). As in the two test cases, we used the non-LTE
discretization scheme with the radiation emission (or radiative
losses) quantity L in the equations (Sect. 4.3). In one case,
referred to as the “non-LTE case”, we used the non-LTE radiative
database (calculated by Rodríguez et al. 2018: cf. Sect. 3), and
let the system evolve following the flow conditions, for which
at a given time and position, either the non-LTE or the LTE
regime prevails and is self-consistently taken into account by the
database. In the other case, referred to as the “LTE case”, we
used the LTE database (still calculated by Rodríguez et al. 2018),
and therefore force an LTE regime, regardless of the physical
conditions.

6.1. Setup

We simulated a uniform fluid with an initial density n =
1012 cm−3 and temperature T = 2 × 104 K that moves with a
velocity v = 5 × 107 cm−1 along the z-axis. We set γ = 7/5 and
µ ≈ 1.29, that is, we assumed solar abundances. Unlike in the
preceding test cases, we did not impose a constant value for kP,
kR, and L, but used the radiative databases. The initial radiation
energy E was chosen in order to start with a fluid in radiative
equilibrium.
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Fig. 4. Gas temperature (black dashed line), radiative gains G (red line),
and radiative losses L (blue line) vs. z for the LTE (top panel) and non-
LTE (bottom panel) shock cases. Both cases are shown after 6 s of evo-
lution. In each plot the gray solid line represents the initial temperature
in the domain.

The computational domain describes a box of length 108 cm
in the non-LTE case, and 107 cm in the LTE case, which are of
equal width and height, 3.418 × 107 cm in both cases. The grid
is composed of 3 × 3 × 1024 cells.

We adopted the Minerbo flux limiter, and boundary condi-
tions identical to those in the shock tests (Sect. 5.2). For the CFL
condition, we used 0.01. For the matrix solver we set a relative
tolerance ε = 10−4.

6.2. Results

The fluid impacts onto the reflective boundary, which generates
a shock that propagates back into the fluid. The shock heats up
the material and forms a post-shock region. Figure 4 shows the
profiles of temperature, radiative gains (G = kP ρ c E), which
represent the energy gained by the fluid after absorbing radiation,
and radiative losses (L) after 6 s of evolution.

The two cases present several differences while we follow
their evolutions. This is related to the different regimes that are
taken into account. In the LTE case (Fig. 4, top panel), the
shock reaches a maximum temperature of ∼5 × 104 K (dashed
line curve). At this peak, the radiative losses (blue curve: L ∼
5 × 106 erg cm−3 s−1) are higher than the radiative gains (red
curve: G ∼ 5×105 erg cm−3 s−1). As a consequence, the material
rapidly cools down until radiative equilibrium (G = L), and the
post-shock region remains relatively cold at ∼2× 104 K, close to
the initial temperature.

Even though the radiative losses are extremely high com-
pared to the non-LTE case (see below, the last paragraph of this

section), there is no precursor region. We can invoke two rea-
sons for this: first, the region that emits is quite small, so that the
radiation energy emitted per unit time is not enough to heat up
the unshocked plasma; second, according to Fig. 1 (middle right
panel), the Planck opacity, kP, in LTE regime is lower by several
orders of magnitudes than that in the non-LTE case. Therefore,
matter absorbs far less radiation in LTE than in non-LTE (we
recall that the gain of radiation energy by matter is G = kP ρ c E).

In the non-LTE regime (Fig. 4, bottom panel), the radia-
tive losses in the shocked region are lower by around three
orders of magnitude than those in the LTE regime: LLTE ∼ 5 ×
106 erg cm−3 s−1 (see above), LNon−LTE ∼ 103−104 erg cm−3 s−1.
In this case, the shock heats the material up T ∼ 5 × 106 K, and
generates a hot post-shock region. Because the radiative losses
are lower than in the LTE case, the shock-heated material needs
more time to cool down, and forms a hot slab. After 6 s, the radia-
tive losses trigger the thermal instabilities at the base of the post-
shock: the material rapidly loses thermal energy through radia-
tion emission. This drop in temperature produces enough radia-
tion energy to heat up the unshocked plasma, thereby generating
a precursor region with a temperature of T ∼ 105 K (dashed
curve on the right in Fig. 4).

7. Conclusions

Including the effects of radiation in HD and MHD models is
a mandatory task to fully describe many astrophysical systems.
Several codes fulfill this request, but none of them considers the
more general non-LTE regime.

Here, we have presented our extended version of the LTE
radiation module developed by Kolb et al. (2013) and imple-
mented in the PLUTO code. The upgraded module is now able
to handle non-LTE regimes (including, self-consistently, the par-
ticular case of LTE regime, depending on the physical plasma
conditions). We used an operator-split method. The system was
solved in two substeps, an explicit step for the hyperbolic sub-
system, and an implicit step for the subsystem that involves
radiation diffusion and radiation source terms. It is this second
subsystem that we have upgraded so that it can now handle non-
LTE conditions.

Starting from the general frequency-integrated comoving-
frame radiation hydrodynamics equations, we have reviewed all
the assumptions and approximations that have led to the equa-
tions that are coded in PLUTO. In particular, we used the flux-
limited diffusion approximation. Moreover, our implementation
is valid for plasma in conditions ranging from the free-streaming
regime to the static diffusion regime. It cannot describe the
dynamic diffusion regime: to do so, we have to include the
two advection terms in the radiation energy equation. More-
over, the multigroup implementation in non-LTE can be a further
improvement of our module. These possible developments will
be the subject of future works.

The module needs the following radiative quantities as input
data versus density and temperature: the radiation emission, the
Planck mean opacity, and the Rosseland mean opacity. Our mod-
ule currently uses non-LTE databases generated with a CRSS
model for a plasma with solar-like abundances. The user may
provide any other set of databases that would be more appro-
priate to the problem to be investigated, however. In our CRSS
approach, the absorption processes, such as photoabsorption and
photoionization, are ignored in the determination of the atomic
level populations. Considering these processes is a much more
difficult problem that leads to stiff rate equations and stiff cou-
pling with the thermodynamic state.
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We have tested the new implementation of the non-LTE
equations, but in LTE conditions, and compared our results with
semi-analytical solutions and with the results given by the previ-
ous version of the code. These tests have established the validity
of our implementation.

We also have demonstrated the importance of considering
the appropriate regime in LTE and in non-LTE regimes by com-
paring the structure of a radiative shock. This is required in order
to correctly describe the dynamics of a radiating fluid.

We have already successfully applied this new upgraded ver-
sion of PLUTO to demonstrate the existence of a radiative pre-
cursor in the accreting stream onto the surface of a classical
T Tauri star (Colombo et al. 2019).

The radiation module has been implemented in version 4.0 of
PLUTO. The code is available to the scientific community upon
request at the website of the observatory of Palermo2.
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