Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/57302
Title: Sistema experto para tomar decisiones de emergencias y seguridad ante meteorología adversa
Authors: Santacreu Ríos, Luis Juan 
Talavera Ortiz, Alejandro 
Aguasca Colomo, Ricardo 
Galván González, Blas 
UNESCO Clasification: 3307 Tecnología electrónica
Keywords: CECOES 1-1-2
Fenómeno Meteorológico Adverso
Sistema Experto
Inteligencia Artificial
Proceso Analítico Jerárquico, et al
Issue Date: 2015
Journal: Dyna (Bilbao) 
Abstract: La información que se maneja en el Centro Coordinador de Emergencias y Seguridad 1-1-2 del Gobierno de Canarias (CECOES 1-1-2), es algo más que significativa antes, durante y después de cualquier Fenómeno Meteorológico Adverso (FMA). El total de boletines de avisos y predicciones de FMA enviados por la Agencia Estatal de Meteorología (AEMET) y recibidos en el CECOES 1-1-2, en cualquier FMA, son considerables. La información debe ser tratada en el menor tiempo posible, con el fin de generar las prealertas y alertas correspondientes, a la vez que los avisos a la población. Los Sistemas Expertos basados en reglas pueden superar las capacidades humanas, por ejemplo, cuando se requiere analizar un gran volumen de datos en un corto espacio de tiempo, como ocurre en los servicios de emergencias. Por otro lado, la Lógica Difusa es una metodología del área de Inteligencia Artificial que es eficaz cuando se trabaja con imprecisión o ambigüedad, datos erróneos o ausencia de estos, algo a lo que los servicios de emergencias están acostumbrados. "Llueve mucho", "lejos", "hace mucho viento" y "poco calor" son respuestas típicas dadas por los alertantes cuando llaman al 1-1-2. Por último, en meteorología se trabaja con conceptos imprecisos como posibilidad (cuando la probabilidad que ocurra un fenómeno meteorológico está entre el 10% y 40%) y probabilidad (cuando está entre el 40% y 70%). Ante todo esto se ha desarrollado un sistema experto de ayuda en la toma de decisiones basado en un motor de inferencia implementado con Lógica Difusa para el CECOES 1-1-2, capaz de dar respuestas concretas ante la imprecisión o carencia de datos, que entrenándolo con casos reales es capaz de mejorar al comportamiento humano, dando una respuesta más rápida y eficaz. Palabras clave: CECOES 1-1-2, Fenómeno Meteorológico Adverso, Sistema Experto, Inteligencia Artificial, Lógica Difusa, Proceso Analítico Jerárquico (AHP).
URI: http://hdl.handle.net/10553/57302
ISSN: 0012-7361
Source: Dyna (Bilbao)[ISSN 0012-7361],v. 90 (5), p. 503-512
URL: http://dialnet.unirioja.es/servlet/articulo?codigo=5186414
Appears in Collections:Artículos
Show full item record

Page view(s)

73
checked on May 11, 2021

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.