Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55752
Título: Improving the performance of the lip identification through the use of shape correction
Autores/as: Travieso González, Carlos Manuel 
Ravelo García, Antonio Gabriel 
Alonso Hernández, Jesús Bernardino 
Canino Rodríguez, José Miguel 
Dutta, Malay Kishore
Clasificación UNESCO: Investigación
Palabras clave: Lip-based biometrics
Image processing
Pattern recognition
Automatic identification
Artificial intelligence
Fecha de publicación: 2019
Publicación seriada: Applied Intelligence 
Resumen: This work presents automatic identification and verification approaches based on lip biometrics, using a static lip shape and applying a lip correction preprocessing, transforming data from Hidden Markov Model and being classified by Support Vector Machines. The classification system is conclusive for the identification of a person by the shape of the lips, even if the person presents soft facial emotions. Moreover the use of static lips shape has been revealed as a good option for security applications. The experiments have been carried out with two public datasets. One dataset was used to model and validate the approach, and the other dataset has been used to test the model blindly. The accuracy is up to 100% and 99.76% for GDPS-ULPGC and RaFD datasets respectively, using two training samples under a hold-out validation. Based on the results we can conclude that the system is very robust and stable with the highest classification capacity and minimal computation complexity.
URI: http://hdl.handle.net/10553/55008
ISSN: 0924-669X
DOI: 10.1007/s10489-018-1352-6
Fuente: Applied Intelligence [ISSN 0924-669X], v. 49 (5), p. 1823-1840
Colección:Artículos
Vista completa

Citas SCOPUSTM   

5
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 24-nov-2024

Visitas

63
actualizado el 27-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.