Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/55723
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Harar, Pavol | en_US |
dc.contributor.author | Galaz, Zoltan | en_US |
dc.contributor.author | Alonso Hernández, Jesús Bernardino | en_US |
dc.contributor.author | Mekyska, Jiri | en_US |
dc.contributor.author | Burget, Radim | en_US |
dc.contributor.author | Smekal, Zdenek | en_US |
dc.date.accessioned | 2019-06-10T12:53:06Z | - |
dc.date.available | 2019-06-10T12:53:06Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.issn | 0941-0643 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/55723 | - |
dc.description.abstract | Automatic objective non-invasive detection of pathological voice based on computerized analysis of acoustic signals can play an important role in early diagnosis, progression tracking, and even effective treatment of pathological voices. In search towards such a robust voice pathology detection system, we investigated three distinct classifiers within supervised learning and anomaly detection paradigms. We conducted a set of experiments using a variety of input data such as raw waveforms, spectrograms, mel-frequency cepstral coefficients (MFCC), and conventional acoustic (dysphonic) features (AF). In comparison with previously published works, this article is the first to utilize combination of four different databases comprising normophonic and pathological recordings of sustained phonation of the vowel /a/ unrestricted to a subset of vocal pathologies. Furthermore, to our best knowledge, this article is the first to explore gradient-boosted trees and deep learning for this application. The following best classification performances measured by F1 score on dedicated test set were achieved: XGBoost (0.733) using AF and MFCC, DenseNet (0.621) using MFCC, and Isolation Forest (0.610) using AF. Even though these results are of exploratory character, conducted experiments do show promising potential of gradient boosting and deep learning methods to robustly detect voice pathologies. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Neural Computing and Applications | en_US |
dc.source | Neural Computing and Applications [ISSN 0941-0643], n. 32(20), p. 15747–15757, (2020) | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Voice pathology detection | en_US |
dc.subject.other | Deep learning | en_US |
dc.subject.other | Gradient boosting | en_US |
dc.subject.other | Anomaly detection | en_US |
dc.title | Towards robust voice pathology detection: Investigation of supervised deep learning, gradient boosting, and anomaly detection approaches across four databases | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00521-018-3464-7 | en_US |
dc.identifier.scopus | 85044933261 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.authorscopusid | 57192572816 | - |
dc.contributor.authorscopusid | 56888706700 | - |
dc.contributor.authorscopusid | 57195466969 | - |
dc.contributor.authorscopusid | 35746344400 | - |
dc.contributor.authorscopusid | 23011250200 | - |
dc.contributor.authorscopusid | 36855362600 | - |
dc.description.lastpage | 11 | en_US |
dc.identifier.issue | 20 | - |
dc.description.firstpage | 1 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Abril 2018 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.description.sjr | 0,713 | |
dc.description.jcr | 5,606 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-7866-585X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Alonso Hernández, Jesús Bernardino | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
37
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
19
checked on Nov 17, 2024
Page view(s)
159
checked on Jul 20, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.