Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/55723
DC FieldValueLanguage
dc.contributor.authorHarar, Pavolen_US
dc.contributor.authorGalaz, Zoltanen_US
dc.contributor.authorAlonso Hernández, Jesús Bernardinoen_US
dc.contributor.authorMekyska, Jirien_US
dc.contributor.authorBurget, Radimen_US
dc.contributor.authorSmekal, Zdeneken_US
dc.date.accessioned2019-06-10T12:53:06Z-
dc.date.available2019-06-10T12:53:06Z-
dc.date.issued2020en_US
dc.identifier.issn0941-0643en_US
dc.identifier.urihttp://hdl.handle.net/10553/55723-
dc.description.abstractAutomatic objective non-invasive detection of pathological voice based on computerized analysis of acoustic signals can play an important role in early diagnosis, progression tracking, and even effective treatment of pathological voices. In search towards such a robust voice pathology detection system, we investigated three distinct classifiers within supervised learning and anomaly detection paradigms. We conducted a set of experiments using a variety of input data such as raw waveforms, spectrograms, mel-frequency cepstral coefficients (MFCC), and conventional acoustic (dysphonic) features (AF). In comparison with previously published works, this article is the first to utilize combination of four different databases comprising normophonic and pathological recordings of sustained phonation of the vowel /a/ unrestricted to a subset of vocal pathologies. Furthermore, to our best knowledge, this article is the first to explore gradient-boosted trees and deep learning for this application. The following best classification performances measured by F1 score on dedicated test set were achieved: XGBoost (0.733) using AF and MFCC, DenseNet (0.621) using MFCC, and Isolation Forest (0.610) using AF. Even though these results are of exploratory character, conducted experiments do show promising potential of gradient boosting and deep learning methods to robustly detect voice pathologies.en_US
dc.languageengen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.sourceNeural Computing and Applications [ISSN 0941-0643], n. 32(20), p. 15747–15757, (2020)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherVoice pathology detectionen_US
dc.subject.otherDeep learningen_US
dc.subject.otherGradient boostingen_US
dc.subject.otherAnomaly detectionen_US
dc.titleTowards robust voice pathology detection: Investigation of supervised deep learning, gradient boosting, and anomaly detection approaches across four databasesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00521-018-3464-7en_US
dc.identifier.scopus85044933261-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid57192572816-
dc.contributor.authorscopusid56888706700-
dc.contributor.authorscopusid57195466969-
dc.contributor.authorscopusid35746344400-
dc.contributor.authorscopusid23011250200-
dc.contributor.authorscopusid36855362600-
dc.description.lastpage11en_US
dc.identifier.issue20-
dc.description.firstpage1en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateAbril 2018en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,713
dc.description.jcr5,606
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

37
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

19
checked on Nov 17, 2024

Page view(s)

159
checked on Jul 20, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.