Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/55502
DC FieldValueLanguage
dc.contributor.authorDas, A.en_US
dc.contributor.authorPal, U.en_US
dc.contributor.authorFerrer, Miguel Angelen_US
dc.contributor.authorBlumenstein, M.en_US
dc.date.accessioned2019-05-27T08:59:29Z-
dc.date.available2019-05-27T08:59:29Z-
dc.date.issued2016en_US
dc.identifier.issn0167-8655en_US
dc.identifier.urihttp://hdl.handle.net/10553/55502-
dc.description.abstractIn this research a new framework for software-based liveness detection for direct attacks in multimodal ocular biometrics across the visible spectrum is proposed. The framework aims to develop a more realistic method for liveness detection compared to previous frameworks proposed in the literature. To fulfil the above highlighted aims in this framework, intra-class level (i.e. user level) liveness detection is introduced. To detect liveness, a new set of image quality-based features is proposed for multimodal ocular biometrics in the visible spectrum. A variety of transformed domain (focus related) aspect and contrast-related quality features are employed to design the framework. Furthermore a new database is developed for liveness detection of multimodal ocular biometrics, which has the prominent presence of multimodal ocular traits (both sclera and iris). Moreover this database is comprised of a larger variety of fake images; those were prepared by employing versatile forging techniques which can be exhibited by imposters. Therefore the proposed schema has dealt with versatile categories of spoofing methods, which were not considered previously in the literature. The database contains a set of 500 fake and 500 genuine eye images acquired from 50 different eyes. An appreciable liveness detection result is achieved in the experiments. Furthermore, the experimental results conclude that this new framework is more efficient and competitive when compared to previous liveness detection schemes.en_US
dc.languageengen_US
dc.relation.ispartofPattern Recognition Lettersen_US
dc.sourcePattern Recognition Letters[ISSN 0167-8655],v. 82, p. 232-241en_US
dc.subjectInvestigaciónen_US
dc.subject.otherBiometricsen_US
dc.subject.otherIrisen_US
dc.subject.otherLivenessen_US
dc.subject.otherScleraen_US
dc.subject.otherVisible spectrumen_US
dc.titleA framework for liveness detection for direct attacks in the visible spectrum for multimodal ocular biometricsen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.patrec.2015.11.016
dc.identifier.scopus84960846464-
dc.identifier.isi000386874600017
dc.contributor.authorscopusid7403596707-
dc.contributor.authorscopusid57214490551
dc.contributor.authorscopusid57200742116-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid56243577200-
dc.description.lastpage241-
dc.description.firstpage232-
dc.relation.volume82-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid3164655
dc.contributor.daisngid25227
dc.contributor.daisngid233119
dc.contributor.daisngid110880
dc.contributor.wosstandardWOS:Das, A
dc.contributor.wosstandardWOS:Pal, U
dc.contributor.wosstandardWOS:Ferrer, MA
dc.contributor.wosstandardWOS:Blumenstein, M
dc.date.coverdateOctubre 2016
dc.identifier.ulpgces
dc.description.sjr0,82
dc.description.jcr1,995
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (1,13 MB)
Show simple item record

SCOPUSTM   
Citations

15
checked on Dec 8, 2024

WEB OF SCIENCETM
Citations

11
checked on Dec 8, 2024

Page view(s)

74
checked on Oct 14, 2023

Download(s)

249
checked on Oct 14, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.