Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55491
Título: AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species
Autores/as: Morales Alamo, David 
López Calbet, José Antonio 
Clasificación UNESCO: 241106 Fisiología del ejercicio
Palabras clave: Activated Protein-Kinase
Exhaustive Physical-Exercise
Anaerobic Energy-Release
Fatty-Acid Oxidation
Sprint Exercise, et al.
Fecha de publicación: 2016
Proyectos: Viabilidad y Sostenibilidad Del Adelgazamiento Mediante Tratamiento Intensificado en Pacientes Con Sobrepeso U Obesidad: Mecanismos Neuroendocrinos y Moleculares 
Publicación seriada: Free Radical Biology and Medicine 
Resumen: Reactive oxygen and nitrogen species (RONS) are generated during exercise depending on intensity, duration and training status. A greater amount of RONS is released during repeated high-intensity sprint exercise and when the exercise is performed in hypoxia. By activating adenosine monophosphate-activated kinase (AMPK), RONS play a critical role in the regulation of muscle metabolism but also in the adaptive responses to exercise training. RONS may activate AMPK by direct an indirect mechanisms. Directly, RONS may activate or deactivate AMPK by modifying RONS-sensitive residues of the AMPK-α subunit. Indirectly, RONS may activate AMPK by reducing mitochondrial ATP synthesis, leading to an increased AMP:ATP ratio and subsequent Thr(172)-AMPK phosphorylation by the two main AMPK kinases: LKB1 and CaMKKβ. In presence of RONS the rate of Thr(172)-AMPK dephosphorylation is reduced. RONS may activate LKB1 through Sestrin2 and SIRT1 (NAD(+)/NADH.H(+)-dependent deacetylase). RONS may also activate CaMKKβ by direct modification of RONS sensitive motifs and, indirectly, by activating the ryanodine receptor (Ryr) to release Ca(2+). Both too high (hypoxia) and too low (ingestion of antioxidants) RONS levels may lead to Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation causing inhibition of Thr(172)-AMPKα phosphorylation. Exercise training increases muscle antioxidant capacity. When the same high-intensity training is applied to arm and leg muscles, arm muscles show signs of increased oxidative stress and reduced mitochondrial biogenesis, which may be explained by differences in RONS-sensing mechanisms and basal antioxidant capacities between arm and leg muscles. Efficient adaptation to exercise training requires optimal exposure to pulses of RONS. Inappropriate training stimulus may lead to excessive RONS formation, oxidative inactivation of AMPK and reduced adaptation or even maladaptation. Theoretically, exercise programs should be designed taking into account the intrinsic properties of different skeletal muscles, the specific RONS induction and the subsequent signaling responses.
URI: http://hdl.handle.net/10553/55491
ISSN: 0891-5849
DOI: 10.1016/j.freeradbiomed.2016.01.012
Fuente: Free Radical Biology and Medicine [ISSN 0891-5849], v. 98, p. 68-77
Colección:Artículos
Vista completa

Citas SCOPUSTM   

55
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

50
actualizado el 15-dic-2024

Visitas

38
actualizado el 22-oct-2022

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.