Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/55089
Título: | A simple indoor localization methodology for fast building classification models based on fingerprints | Autores/as: | Sánchez-Rodríguez, David Alonso-González, Itziar Ley-Bosch, Carlos Quintana-Suárez, Miguel A. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Indoor localization Methodology Fingerprint Classification Feature fusion, et al. |
Fecha de publicación: | 2019 | Publicación seriada: | Electronics (Switzerland) | Resumen: | Indoor localization has received tremendous attention in the last two decades due to location-aware services being highly demanded. Wireless networks have been suggested to solve this problem in many research works, and efficient algorithms have been developed with precise location and high accuracy. Nevertheless, those approaches often have high computational and high energy consumption. Hence, in temporary environments, such as emergency situations, where a fast deployment of an indoor localization system is required, those methods are not appropriate. In this manuscript, a methodology for fast building of an indoor localization system is proposed. For that purpose, a reduction of the data dimensionality is achieved by applying data fusion and feature transformation, which allow us to reduce the computational cost of the classifier training phase. In order to validate the methodology, three different datasets were used: two of them are public datasets based mainly on Received Signal Strength (RSS) from different Wi-Fi access point, and the third is a set of RSS values gathered from the LED lamps in a Visible Light Communication (VLC) network. The simulation results show that the proposed methodology considerably amends the overall computational performance and provides an acceptable location estimation error. | URI: | http://hdl.handle.net/10553/55089 | ISSN: | 2079-9292 | DOI: | 10.3390/electronics8010103 | Fuente: | Electronics (Switzerland) [ISSN 2079-9292], v. 8 (1), 103 |
Colección: | Artículos |
Citas SCOPUSTM
5
actualizado el 05-ene-2025
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 05-ene-2025
Visitas
94
actualizado el 02-mar-2024
Descargas
148
actualizado el 02-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.