Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55085
Campo DC Valoridioma
dc.contributor.authorPalacio, M. G.en_US
dc.contributor.authorFerrero, S. B.en_US
dc.contributor.authorFrery, A. C.en_US
dc.date.accessioned2019-02-18T16:27:03Z-
dc.date.available2019-02-18T16:27:03Z-
dc.date.issued2019en_US
dc.identifier.issn0143-1161en_US
dc.identifier.urihttp://hdl.handle.net/10553/55085-
dc.description.abstractPolarimetric Synthetic Aperture Radar (PolSAR) images are an important source of information. Speckle noise gives SAR images a granular appearance that makes interpretation and analysis hard tasks. A major issue is the assessment of information content in these kinds of images, and how it is affected by usual processing techniques. Previous works have resulted in various approaches for quantifying image information content. In this paper, we study this problem from the classification accuracy viewpoint, focusing on the filtering and the classification stages. Thus, through classified images, we verify how changing the properties of the input data affects their quality. The input is an actual PolSAR image, the control parameters are (i) the filter (Local Mean, LM, or Model-Based PolSAR, MBPolSAR) and the size of their support, and (ii) the classification method (Maximum Likelihood, ML, or Support Vector Machine, SVM), and the output is the precision of the classification algorithm applied to the filtered data. To expand the conclusions, this study deals not only with Classification Accuracy but also with Kappa and Overall Accuracy as measures of map precision. Experiments were conducted on two airborne PolSAR images. Differently from what was observed in previous works, almost all quality measures are good and increase with degradation, i.e. the filtering algorithms that we used always improve the classification results at least up to supports of size 7 × 7.en_US
dc.languageengen_US
dc.publisher0143-1161
dc.relation.ispartofInternational Journal of Remote Sensingen_US
dc.sourceInternational Journal of Remote Sensing[ISSN 0143-1161], v. 40(12), p. 4489-4505en_US
dc.subject3325 Tecnología de las telecomunicacionesen_US
dc.titleRevisiting the effect of spatial resolution on information content based on classification resultsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/01431161.2019.1569278-
dc.identifier.scopus85060641770-
dc.contributor.authorscopusid13605746100-
dc.contributor.authorscopusid7102126989-
dc.contributor.authorscopusid7003561251-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,928
dc.description.jcr2,976
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.orcid0000-0002-8002-5341-
crisitem.author.fullNameC. Frery, Alejandro-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.