Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55062
Título: Social media as a resource for sentiment analysis of Airport Service Quality (ASQ)
Autores/as: Martin-Domingo, Luis
Martín, Juan Carlos 
Mandsberg, Glen
Palabras clave: Airport
Service
Quality
Twitter
Sentiment Analysis
Fecha de publicación: 2019
Editor/a: 0969-6997
Publicación seriada: Journal of Air Transport Management 
Conferencia: 21st World Conference of the Air-Transport-Research-Society (ATRS) 
Resumen: User generated content (UGC) is providing new broad information datasets about airport service quality (ASQ) that are more easily available to researchers than information gathered using traditional techniques, such as surveys conducted with passengers. Research in the field is characterized by UGC provided on specialized blogs and websites. This study utilizes London Heathrow airport's Twitter account dataset and applies the sentiment analysis (SA) technique to measure ASQ. The aim of this research is to explore how SA techniques can identify new insights beyond those provided by more traditional methods. The dataset includes 4392 tweets and the SA identifies 23 attributes that can be used for comparison with other ASQ scales. Findings indicate that the frequency of passenger references to the attributes of the scale differs significantly in some cases and that the discernment of these differences can provide actionable insights for airport management when improving airport service quality.
URI: http://hdl.handle.net/10553/55062
ISSN: 0969-6997
DOI: 10.1016/j.jairtraman.2019.01.004
Fuente: Journal of Air Transport Management[ISSN 0969-6997], n. 78, p. 106-115
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.