Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/55058
Title: Design of the Distillation-Extraction Tandem to Separate Ethyl Propanoate from Heptane Solutions Using Pyridinium-Derived Organic Salts as Entrainers. Its Use as a Potential Bioactive Compound
Authors: Herrera Rodriguez, Carmen 
Fernández Suárez, Luis Jesús 
Ortega Saavedra, Juan 
López Tosco, Sara 
Sosa Marco, Adriel 
UNESCO Clasification: 3303 ingeniería y tecnología químicas
Keywords: Plus water
ternary-sistems
Excess molar enthalpies
Ethil-Acetate-Ethanol
Binary-Sistems, et al
Issue Date: 2019
Journal: Industrial & Engineering Chemistry Research 
Abstract: This work shows a new approach to the parameter-fitting problem useful in the solutions thermodynamic field, providing a more objective framework to obtain better empirical/semiempirical models for chemical engineering applications. A model based on the excess Gibbs energy function gE is used to represent the behavior of real solutions, together with its first derivative hE, using a combined modeling under the paradigm of multiobjective optimization. The problem is formulated as an MINLP methodology to simultaneously consider two aspects: the model complexity and the best parametrization to prevent the overfitting, controlling the trade-off between them by applying the Akaike Information Criterion to gE residuals. Two different solvers, one deterministic (SBB/CONOPT) and another evolutionary (GA), are used, and their ability to solve the problem is analyzed. The designed methodology is applied to three highlighted VLE cases in chemical engineering, and the results obtained show the ability of the method to get the best model in each case. The proposed methodology proved useful for modulating the number of parameters considering the imposed requirements, which decrease as the accuracy requirements for hE are relaxed. The efficient-fronts obtained show a small trade-off region, noting that the proposed framework provides the simplest models with the minimum completeness uncertainty.
URI: http://hdl.handle.net/10553/55058
ISSN: 0888-5885
DOI: 10.1021/acs.iecr.8b03986
Source: Industrial & Engineering Chemistry Research [ISSN 0888-5885], v. 58 (2), p. 973-983, (Enero 2019)
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

4
checked on Dec 15, 2024

WEB OF SCIENCETM
Citations

3
checked on Dec 15, 2024

Page view(s)

65
checked on Jan 27, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.