Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55016
Título: SVM optimization for brain tumor identification using infrared spectroscopic samples
Autores/as: Fabelo, Himar 
Ortega, Samuel 
Casselden, Elizabeth
Loh, Jane
Bulstrode, Harry
Zolnourian, Ardalan
Grundy, Paul
Callico, Gustavo M. 
Bulters, Diederik
Sarmiento, Roberto 
Palabras clave: Cancer-Detection
Classification
Diagnosis
Gliomas
Tissue, et al.
Fecha de publicación: 2018
Editor/a: 1424-8220
Publicación seriada: Sensors 
Resumen: The work presented in this paper is focused on the use of spectroscopy to identify the type of tissue of human brain samples employing support vector machine classifiers. Two different spectrometers were used to acquire infrared spectroscopic signatures in the wavenumber range between 1200-3500 cm(-1). An extensive analysis was performed to find the optimal configuration for a support vector machine classifier and determine the most relevant regions of the spectra for this particular application. The results demonstrate that the developed algorithm is robust enough to classify the infrared spectroscopic data of human brain tissue at three different discrimination levels.
URI: http://hdl.handle.net/10553/55016
ISSN: 1424-8220
DOI: 10.3390/s18124487
Fuente: Sensors (Switzerland)[ISSN 1424-8220],v. 18 (4487)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.