Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/54813
Título: | The role of artificial neural networks in evolutionary optimisation: a review | Autores/as: | Maarouf, M. Sosa Marco, Adriel Galván-González, Blas José Greiner Sánchez, David Juan Winter Althaus, Gabriel Méndez Babey, Máximo Juan Aguasca Colomo, Ricardo |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Artificial neural networks Evolutionary optimisation Evolutionary algorithm |
Fecha de publicación: | 2015 | Editor/a: | Springer | Publicación seriada: | Computational Methods in Applied Sciences | Conferencia: | 10th EUROGEN International Conference 2013 | Resumen: | This paper reviews the combination of Artificial Neural Networks (ANN) and Evolutionary Optimisation (EO) to solve challenging problems for the academia and the industry. Both methodologies has been mixed in several ways in the last decade with more or less degree of success, but most of the contributions can be classified into the two following groups: the use of EO techniques for optimizing the learning of ANN (EOANN) and the developing of ANNs to increase the efficiency of EO processes (ANNEO). The number of contributions shows that the combination of both methodologies is nowadays a mature field but some new trends and the advances in computer science permits to affirm that there is still room for noticeable improvements. | URI: | http://hdl.handle.net/10553/54813 | ISBN: | 978-3-319-11540-5 | ISSN: | 1871-3033 | DOI: | 10.1007/978-3-319-11541-2_4 | Fuente: | Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences / David Greiner, Blas Galván, Jacques Périaux, Nicolas Gauger, Kyriakos Giannakoglou, Gabriel Winter (Eds.). Computational Methods in Applied Sciences [ISSN 1871-3033], v. 36, p. 59-76 |
Colección: | Capítulo de libro |
Citas SCOPUSTM
17
actualizado el 24-nov-2024
Citas de WEB OF SCIENCETM
Citations
15
actualizado el 24-nov-2024
Visitas
133
actualizado el 28-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.