Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54813
Título: The role of artificial neural networks in evolutionary optimisation: a review
Autores/as: Maarouf, M.
Sosa Marco, Adriel 
Galván-González, Blas José 
Greiner Sánchez, David Juan 
Winter Althaus, Gabriel 
Méndez Babey, Máximo Juan 
Aguasca Colomo, Ricardo 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Artificial neural networks
Evolutionary optimisation
Evolutionary algorithm
Fecha de publicación: 2015
Editor/a: Springer 
Publicación seriada: Computational Methods in Applied Sciences 
Conferencia: 10th EUROGEN International Conference 2013 
Resumen: This paper reviews the combination of Artificial Neural Networks (ANN) and Evolutionary Optimisation (EO) to solve challenging problems for the academia and the industry. Both methodologies has been mixed in several ways in the last decade with more or less degree of success, but most of the contributions can be classified into the two following groups: the use of EO techniques for optimizing the learning of ANN (EOANN) and the developing of ANNs to increase the efficiency of EO processes (ANNEO). The number of contributions shows that the combination of both methodologies is nowadays a mature field but some new trends and the advances in computer science permits to affirm that there is still room for noticeable improvements.
URI: http://hdl.handle.net/10553/54813
ISBN: 978-3-319-11540-5
ISSN: 1871-3033
DOI: 10.1007/978-3-319-11541-2_4
Fuente: Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences / David Greiner, Blas Galván, Jacques Périaux, Nicolas Gauger, Kyriakos Giannakoglou, Gabriel Winter (Eds.). Computational Methods in Applied Sciences [ISSN 1871-3033], v. 36, p. 59-76
Colección:Capítulo de libro
Vista completa

Citas SCOPUSTM   

17
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

15
actualizado el 24-nov-2024

Visitas

133
actualizado el 28-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.