Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/54682
Title: Two-sided estimation of diameters reduction rate for the longest edge n-section of triangles with n ≥ 4
Authors: Suárez, José P. 
Moreno, Tania
Plaza, Ángel 
Abad, Pilar 
UNESCO Clasification: 120603 Análisis de errores
Keywords: Triangular mesh
Longest edge
Mesh refinement
Issue Date: 2013
Journal: Applied Mathematics and Computation 
Abstract: In this work we study the diameters reduction rate for the iterative application of the longest edge (LE) n-section of triangles for n⩾4. The maximum diameter dkn of all triangles generated at the kth iteration of the LE n-section is closely connected with the properties of the triangular mesh generated by this refinement scheme. The upper and the lower bounds for dk2 were proved by Kearfott in [9] and for dk3 by Plaza et al. [12]. Here, we derive the two-sided estimates for dkn with n⩾4.
URI: http://hdl.handle.net/10553/54682
ISSN: 0096-3003
DOI: 10.1016/j.amc.2013.08.041
Source: Applied Mathematics and Computation [ISSN 0096-3003], v. 224, p. 492-500, (Octubre 2013)
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

1
checked on Jun 26, 2022

WEB OF SCIENCETM
Citations

1
checked on Jun 26, 2022

Page view(s)

45
checked on Oct 2, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.