Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54676
Título: Convergence speed of generalized longest-edge-based refinement
Autores/as: Suárez, José P. 
Moreno, Tania
Abad, Pilar 
Plaza, Ángel 
Clasificación UNESCO: 120603 Análisis de errores
Fecha de publicación: 2013
Publicación seriada: Lecture Notes in Electrical Engineering 
Conferencia: 2012 World Congress on Engineering, WCE 2012 
Resumen: In the refinement of meshes, one wishes to iteratively subdivide a domain following geometrical partition rules. The aim is to obtain a new discretized domain with adapted regions. We prove that the Longest Edge n -section of triangles for n⩾4 produces a finite sequence of triangle meshes with guaranteed convergence of diameters and review previous result when n equals 2 and 3. We give upper and lower bounds for the convergence speed in terms of diameter reduction. Then we fill the gap in the analysis of the diameters convergence for generalized Longest Edge based refinement. In addition, we give a numerical study for the case of n=4 , the so-called LE quatersection, evidencing its utility in adaptive mesh refinement.
URI: http://hdl.handle.net/10553/54676
ISBN: 978-94-007-6189-6
ISSN: 1876-1100
DOI: 10.1007/978-94-007-6190-2-39
Fuente: Yang GC., Ao S., Gelman L. (eds) IAENG Transactions on Engineering Technologies. Lecture Notes in Electrical Engineering, vol 229, p. 511-522. Springer, Dordrecht,
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.