Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54616
Título: ANDINO: automata network model for the diffusion of nitric oxide in biological and artificial neural systems. A preliminary study
Autores/as: Suárez-Araujo, C. P. 
Fernández-López, P. 
García Báez, P. 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Automata theory
biology computing
Diffusion
Neural nets
Fecha de publicación: 2011
Conferencia: 12th IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2011 
Resumen: An underlying mechanism of Volume Transmission (VT) is the diffusion of Nitric Oxide (NO), which affects all types of brain activity. In this paper we present a new discrete Model based on Automata Networks for Diffusion of NO (ANDINO). The main objectives are to demonstrate its ability to observe the dynamics of diffusion of NO from a molecular perspective and to study how the establishment of local diffusion rules produces global phenomena in which complex structures of NO molecules are generated,( following specified movement dynamics). We show that ANDINO is a highly powerful and general formal tool for studying and determining the dynamic of NO diffusion, both in brain and artificial neural systems. We present a short (and preliminary) computational analysis of the dynamics of NO diffusion and the self-regulation process using a two-dimensional AN made up of 420 automata with a hexagonal connection scheme working in a homogeneous and isotropic environment. Finally we demonstrate the ability of ANDINO to analyze the relationship among the different processes involved in the global dynamics of NO, such as diffusion, self-regulation/recombination and Synthesis.
URI: http://hdl.handle.net/10553/54616
ISBN: 978-1-4577-0044-6
9781457700453
DOI: 10.1109/CINTI.2011.6108483
Fuente: 12th IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2011 - Proceedings (6108483), p. 11-16
Colección:Actas de congresos
Vista completa

Visitas

117
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.