Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54567
Campo DC Valoridioma
dc.contributor.authorPérez Del Pino, M. A.en_US
dc.contributor.authorGarcía Báez, P.en_US
dc.contributor.authorFernández López, P.en_US
dc.contributor.authorSuárez Araújo, C. P.en_US
dc.date.accessioned2019-02-18T11:36:49Z-
dc.date.available2019-02-18T11:36:49Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-7650-3en_US
dc.identifier.isbn9781424476527
dc.identifier.issn1543-9259en_US
dc.identifier.urihttp://hdl.handle.net/10553/54567-
dc.description.abstractDenial of Service (DoS) attacks are some of the biggest problems for computer security. Detection and early alert of these attacks would be helpful information which could be used to make appropriate decisions in order to minimize their negative impact. This paper proposes a new approach based on SOM-type unsupervised artificial neural networks for detection of this type of attacks at an early stage. We present a SOM-based Computational Intelligent System for DoS Attacks Detection (CISDAD) and a new representation scheme for information. A study has been carried out on real traffic from a healthcare environment based on web technologies. Results show effectiveness in the detection of toxic traffic and congestion regarding abuse in communication networks.en_US
dc.languageengen_US
dc.sourceINES 2010 - 14th International Conference on Intelligent Engineering Systems, Proceedings (5483858), p. 151-157en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject330408 Fiabilidad de los ordenadoresen_US
dc.titleTowards self-organizing maps based Computational Intelligent system for Denial of Service Attacks Detectionen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference14th International Conference on Intelligent Engineering Systems, INES 2010
dc.identifier.doi10.1109/INES.2010.5483858
dc.identifier.scopus77954797405-
dc.contributor.authorscopusid36180047800-
dc.contributor.authorscopusid6506952458-
dc.contributor.authorscopusid6602579067-
dc.contributor.authorscopusid6603605708-
dc.description.lastpage157-
dc.identifier.issue5483858-
dc.description.firstpage151-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.eisbn978-1-4244-7652-7-
dc.utils.revisionen_US
dc.date.coverdateJulio 2010
dc.identifier.conferenceidevents121382
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0009-0002-8343-1086-
crisitem.author.orcid0000-0002-9973-5319-
crisitem.author.orcid0000-0002-2135-6095-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNamePérez Del Pino,Miguel Angel-
crisitem.author.fullNameGarcía Baez, Patricio-
crisitem.author.fullNameFernández López, Pablo Carmelo-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
crisitem.event.eventsstartdate05-05-2010-
crisitem.event.eventsenddate07-05-2010-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

5
actualizado el 17-nov-2024

Visitas

106
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.