Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54567
Título: Towards self-organizing maps based Computational Intelligent system for Denial of Service Attacks Detection
Autores/as: Pérez Del Pino, M. A. 
García Báez, P. 
Fernández López, P. 
Suárez Araújo, C. P. 
Clasificación UNESCO: 120304 Inteligencia artificial
330408 Fiabilidad de los ordenadores
Fecha de publicación: 2010
Conferencia: 14th International Conference on Intelligent Engineering Systems, INES 2010 
Resumen: Denial of Service (DoS) attacks are some of the biggest problems for computer security. Detection and early alert of these attacks would be helpful information which could be used to make appropriate decisions in order to minimize their negative impact. This paper proposes a new approach based on SOM-type unsupervised artificial neural networks for detection of this type of attacks at an early stage. We present a SOM-based Computational Intelligent System for DoS Attacks Detection (CISDAD) and a new representation scheme for information. A study has been carried out on real traffic from a healthcare environment based on web technologies. Results show effectiveness in the detection of toxic traffic and congestion regarding abuse in communication networks.
URI: http://hdl.handle.net/10553/54567
ISBN: 978-1-4244-7650-3
9781424476527
ISSN: 1543-9259
DOI: 10.1109/INES.2010.5483858
Fuente: INES 2010 - 14th International Conference on Intelligent Engineering Systems, Proceedings (5483858), p. 151-157
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

5
actualizado el 15-dic-2024

Visitas

106
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.