Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54496
Título: Multiple-objective genetic algorithm using the multiple criteria decision making method TOPSIS
Autores/as: Méndez, Máximo 
Galván, Blas 
Salazar, Daniel
Greiner, David 
Clasificación UNESCO: 120304 Inteligencia artificial
12 Matemáticas
Palabras clave: 0–1 Multi-objective knapsack problem (0–1MOKP)
Multi-objective evolutionary algorithm
Multiple criteria decision making
Safety systems design optimisation
Preferences, et al.
Fecha de publicación: 2009
Editor/a: Springer 
Publicación seriada: Lecture Notes in Economics and Mathematical Systems 
Conferencia: 7th Multi-Objective Programming and Goal Programming Conference 
Resumen: The so called second generation of Multi-Objective Evolutionary Algorithms (MOEAs) like NSGA-II, are highly efficient and obtain Pareto optimal fronts characterized mainly by a wider spread and visually distributed fronts. The subjacent idea is to provide the decision-makers (DM) with the most representative set of alternatives in terms of objective values, reserving the articulation of preferences to an a posteriori stage. Nevertheless, in many real discrete problems the number of solutions that belong the Pareto front is unknown and if the specified size of the non-dominated population in the MOEA is less than the number of solutions of the problem, the found front will be incomplete for a posteriori Making Decision. A possible strategy to overcome this difficulty is to promote those solutions placed in the region of interest while neglecting the others during the search, according to some DM's preferences. We propose TOPSISGA, that merges the second generation of MOEAs (we use NSGA-II) with the well known multiple criteria decision making technique TOPSIS whose main principle is to identify as preferred solutions those ones with the shortest distance to the positive ideal solution and the longest distance from the negative ideal solution. The method induces an ordered list of alternatives in accordance to the DM's preferences based on Similarity to the ideal point.
URI: http://hdl.handle.net/10553/54496
ISBN: 978-3-540-85645-0
ISSN: 0075-8442
DOI: 10.1007/978-3-540-85646-7_14
Fuente: Multiobjective Programming and Goal Programming. Lecture Notes in Economics and Mathematical Systems, v. 618 LNE, p. 145-154
Colección:Actas de congresos
Adobe PDF (157,23 kB)
Vista completa

Citas SCOPUSTM   

9
actualizado el 10-nov-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 25-feb-2024

Visitas

126
actualizado el 01-nov-2024

Descargas

93
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.