Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/54496
Título: | Multiple-objective genetic algorithm using the multiple criteria decision making method TOPSIS | Autores/as: | Méndez, Máximo Galván, Blas Salazar, Daniel Greiner, David |
Clasificación UNESCO: | 120304 Inteligencia artificial 12 Matemáticas |
Palabras clave: | 0–1 Multi-objective knapsack problem (0–1MOKP) Multi-objective evolutionary algorithm Multiple criteria decision making Safety systems design optimisation Preferences, et al. |
Fecha de publicación: | 2009 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Economics and Mathematical Systems | Conferencia: | 7th Multi-Objective Programming and Goal Programming Conference | Resumen: | The so called second generation of Multi-Objective Evolutionary Algorithms (MOEAs) like NSGA-II, are highly efficient and obtain Pareto optimal fronts characterized mainly by a wider spread and visually distributed fronts. The subjacent idea is to provide the decision-makers (DM) with the most representative set of alternatives in terms of objective values, reserving the articulation of preferences to an a posteriori stage. Nevertheless, in many real discrete problems the number of solutions that belong the Pareto front is unknown and if the specified size of the non-dominated population in the MOEA is less than the number of solutions of the problem, the found front will be incomplete for a posteriori Making Decision. A possible strategy to overcome this difficulty is to promote those solutions placed in the region of interest while neglecting the others during the search, according to some DM's preferences. We propose TOPSISGA, that merges the second generation of MOEAs (we use NSGA-II) with the well known multiple criteria decision making technique TOPSIS whose main principle is to identify as preferred solutions those ones with the shortest distance to the positive ideal solution and the longest distance from the negative ideal solution. The method induces an ordered list of alternatives in accordance to the DM's preferences based on Similarity to the ideal point. | URI: | http://hdl.handle.net/10553/54496 | ISBN: | 978-3-540-85645-0 | ISSN: | 0075-8442 | DOI: | 10.1007/978-3-540-85646-7_14 | Fuente: | Multiobjective Programming and Goal Programming. Lecture Notes in Economics and Mathematical Systems, v. 618 LNE, p. 145-154 |
Colección: | Actas de congresos |
Citas SCOPUSTM
9
actualizado el 10-nov-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 25-feb-2024
Visitas
126
actualizado el 01-nov-2024
Descargas
93
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.