Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54387
Campo DC Valoridioma
dc.contributor.authorFernández López, P.en_US
dc.contributor.authorSuarez Araujo, C. P.en_US
dc.contributor.authorGarcía Báez, Patricioen_US
dc.contributor.authorSanchez Martin, G.en_US
dc.date.accessioned2019-02-18T10:28:45Z-
dc.date.available2019-02-18T10:28:45Z-
dc.date.issued2003en_US
dc.identifier.isbn978-3-540-40210-7en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10553/54387-
dc.description.abstractIn this paper, we show how the diffusion of the Nitric Oxide retrograde neuromessenger (NO) in the neural tissue produces Diffusive Hybrid Neuromodulation (DHN), as well as positively inuencing the learning process in the artificial and biological neural networks. It also considers whether the DHN, together with the correlational character that helps Hebb’s law, is the best schema to represent the resulting learning process. We conducted the entire study by means of analysing the behaviour of the Diffusion Associative Network (DAN) proposed by our group. In addition, and in order to identify the way in which the diffusion of the NO may coincidently affect the learning process, such as those supported by Hebb’s Law, we created and studied recursive schemas of the calculation of the optimal weight matrix in the lineal association, which were then used to try to identify possible ways to express the diffusion. From this last study, we concluded that the recursive schemas are not sufficient in the calculation of the weight matrix in order for the expression identification of the diffusion phenomena in the learning process. These results pointed us towards the search for new schemas for the Hebb law, based on the effect of the NO and that it is different to the modulated correlation, as well as for the search for a more appropriate diffusion model for the NO, such as the compartimental model.en_US
dc.languageengen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceMira J., Álvarez J.R. (eds) Computational Methods in Neural Modeling. IWANN 2003. Lecture Notes in Computer Science, vol 2686, pp 54-61. Springer, Berlin, Heidelbergen_US
dc.subject120304 Inteligencia artificialen_US
dc.titleDiffusion associative network: diffusive hybrid neuromodulation and volume learningen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.relation.conference7th International Work Conference on Artificial and Natural Neural Networks
dc.identifier.doi10.1007/3-540-44868-3_8en_US
dc.identifier.scopus33646173203-
dc.identifier.isi000185042000008
dc.contributor.authorscopusid55929543500-
dc.contributor.authorscopusid6603605708-
dc.contributor.authorscopusid6506952458-
dc.contributor.authorscopusid22735361100-
dc.description.lastpage61en_US
dc.description.firstpage54en_US
dc.relation.volume2686en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid3185920
dc.contributor.daisngid1776211
dc.contributor.daisngid2362390
dc.contributor.daisngid25121542
dc.identifier.eisbn978-3-540-44868-6-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Lopez, PF
dc.contributor.wosstandardWOS:Araujo, CPS
dc.contributor.wosstandardWOS:Baez, PG
dc.contributor.wosstandardWOS:Martin, GS
dc.date.coverdateDiciembre 2003
dc.identifier.conferenceidevents120365
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate03-06-2003-
crisitem.event.eventsenddate06-06-2003-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.orcid0000-0002-2135-6095-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.orcid0000-0002-9973-5319-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameFernández López, Pablo Carmelo-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
crisitem.author.fullNameGarcía Baez, Patricio-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

2
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 25-feb-2024

Visitas

110
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.