Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/54367
Título: | The propagation problem in longest-edge refinement | Autores/as: | Suárez, José P. Plaza, Ángel Carey, Graham F. |
Clasificación UNESCO: | 120601 Construcción de algoritmos | Palabras clave: | Mesh refinement Longest edge Propagation path |
Fecha de publicación: | 2005 | Publicación seriada: | Finite Elements in Analysis and Design | Resumen: | Two asymptotic properties that arise in iterative mesh refinement of triangles are introduced and investigated. First, we provide theoretical results showing that recursive application of uniform four triangles longest-edge (4T-LE) partition to an arbitrary unstructured triangular mesh produces meshes in which the triangle pairings sharing a common longest edge asymptotically tend to cover the area of the whole mesh. As a consequence, we prove that for a triangle, the induced exterior conforming refinement zone extends on average to a few neighbor adjacent triangles. We determine the asymptotic extent of this propagating path and include results of supporting numerical experiments with uniform and adaptive mesh refinement. Similar behavior and LE propagation from a four triangle self similar (4T-SS) local subdivision alternative is analyzed and compared numerically. Hybrid 4T-LE and 4T-SS LE schemes are also considered. The results are relevant to mesh refinement in finite element and finite volume calculations as well as mesh enhancement in Computer Graphics and CAGD. | URI: | http://hdl.handle.net/10553/54367 | ISSN: | 0168-874X | DOI: | 10.1016/j.finel.2005.06.005 | Fuente: | Finite Elements in Analysis and Design[ISSN 0168-874X],v. 42, p. 130-151 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.