Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/54367
DC FieldValueLanguage
dc.contributor.authorSuárez, José P.en_US
dc.contributor.authorPlaza, Ángelen_US
dc.contributor.authorCarey, Graham F.en_US
dc.contributor.otherPLAZA, ANGEL-
dc.contributor.otherSuarez, Jose Pablo-
dc.date.accessioned2019-02-18T10:21:16Z-
dc.date.available2019-02-18T10:21:16Z-
dc.date.issued2005en_US
dc.identifier.issn0168-874Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/54367-
dc.description.abstractTwo asymptotic properties that arise in iterative mesh refinement of triangles are introduced and investigated. First, we provide theoretical results showing that recursive application of uniform four triangles longest-edge (4T-LE) partition to an arbitrary unstructured triangular mesh produces meshes in which the triangle pairings sharing a common longest edge asymptotically tend to cover the area of the whole mesh. As a consequence, we prove that for a triangle, the induced exterior conforming refinement zone extends on average to a few neighbor adjacent triangles. We determine the asymptotic extent of this propagating path and include results of supporting numerical experiments with uniform and adaptive mesh refinement. Similar behavior and LE propagation from a four triangle self similar (4T-SS) local subdivision alternative is analyzed and compared numerically. Hybrid 4T-LE and 4T-SS LE schemes are also considered. The results are relevant to mesh refinement in finite element and finite volume calculations as well as mesh enhancement in Computer Graphics and CAGD.en_US
dc.languageengen_US
dc.relation.ispartofFinite Elements in Analysis and Designen_US
dc.sourceFinite Elements in Analysis and Design[ISSN 0168-874X],v. 42, p. 130-151en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherMesh refinementen_US
dc.subject.otherLongest edgeen_US
dc.subject.otherPropagation pathen_US
dc.titleThe propagation problem in longest-edge refinementen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.finel.2005.06.005
dc.identifier.scopus27144497554-
dc.identifier.isi000233157000002-
dc.contributor.authorscopusid7202040282-
dc.contributor.authorscopusid7006613647-
dc.contributor.authorscopusid24517624600-
dc.description.lastpage151-
dc.description.firstpage130-
dc.relation.volume42-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000233157000002-
dc.contributor.daisngid1080382-
dc.contributor.daisngid259483-
dc.contributor.daisngid36333-
dc.identifier.investigatorRIDA-8210-2008-
dc.identifier.investigatorRIDC-1092-2012-
dc.identifier.externalWOS:000233157000002-
dc.contributor.wosstandardWOS:Suarez, JP
dc.contributor.wosstandardWOS:Plaza, A
dc.contributor.wosstandardWOS:Carey, GF
dc.date.coverdateNoviembre 2005
dc.identifier.ulpgces
dc.description.jcr0,715
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Cartografía y Expresión Gráfica en La Ingeniería-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0001-8140-9008-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameSuárez Rivero, José Pablo-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

12
checked on Feb 5, 2023

WEB OF SCIENCETM
Citations

8
checked on Oct 2, 2022

Page view(s)

95
checked on Oct 15, 2022

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.