Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/54142
DC FieldValueLanguage
dc.contributor.authorSuarez Araujo, Carmen P.en_US
dc.contributor.authorRitter, Gerhard X.en_US
dc.date.accessioned2019-02-18T08:54:18Z-
dc.date.available2019-02-18T08:54:18Z-
dc.date.issued1992en_US
dc.identifier.isbn0819409421en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/54142-
dc.description.abstractImage algebra as a mathematical structure provides a much broader framework of neural computing. The matrix product in the basic equations of the current linear-based neural networks are furnished by the generalized matrix product obtaining new computational models as morphological neural networks (MNN). In this paper we propose a theoretic approach on the invariant perception. We also show that image algebra can be used not only in the field of image processing but in other areas related to artificial perception systems. Our study is based on both a general theory of neural network and the invariant perception by the cortex theory. The neural structures that we propose uphold both the architecture and functionality of the cortex. We present a neural network model for computing auditory homothetic invariances in accordance with a general framework in image algebra. The neuronal synthesis of this model is obtain using MNN theory with the binary operations the maximum and the multiplication in the neural network formulation. We also propose a second model which is achieved introducing a simple logarithmic transformation in the current model. In addition we propose an alternative MNN for computing homothetic invariances which arise from how the problems are formulated in the systems of artificial vision. This last neural network is appropriate to compute visual invariances when we process patterns defined in two dimension spaces.
dc.languagespaen_US
dc.publisher0277-786Xen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.sourceProceedings of SPIE - The International Society for Optical Engineering[ISSN 0277-786X],v. 1769, p. 128-142en_US
dc.titleMorphological neural networks and image algebra in artificial perception systemsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceImage Algebra and Morphological Image Processing III
dc.identifier.scopus0027062261-
dc.contributor.authorscopusid6603605708-
dc.contributor.authorscopusid7202508194-
dc.description.lastpage142-
dc.description.firstpage128-
dc.relation.volume1769-
dc.type2Actas de congresosen_US
dc.date.coverdateDiciembre 1992
dc.identifier.conferenceidevents121240
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate19-07-1992-
crisitem.event.eventsenddate19-07-1992-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
Appears in Collections:Actas de congresos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.