Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/54111
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Gonzalez-Rodriguez, M. | |
dc.contributor.author | Benitez-Diaz, D. | |
dc.contributor.author | Suarez-Araujo, C. P. | |
dc.date.accessioned | 2019-02-18T08:43:48Z | - |
dc.date.available | 2019-02-18T08:43:48Z | - |
dc.date.issued | 1990 | |
dc.identifier.issn | 0196-9722 | |
dc.identifier.uri | http://hdl.handle.net/10553/54111 | - |
dc.description.abstract | The discriminatory additional information supplied by chromatic components of an image is useful for segmentation techniques that allow fast and efficient separation of the objects in a scene. We show a method that has two essential processes for separating and recognizing pans of a scene in the UVY visual chromatic space. In the learning process, each part of the scene is analyzed, extracting all its discriminatory chromatic features. For this purpose we use a clustering analysis, which divides the scene in several sections with similar chromatic features. This set of features constitutes the “learning bank.” The recognition process consists of recognizing, using the learning bank, each section obtained in clustering analysis. © 1990 Taylor & Francis Group, LLC. | |
dc.publisher | 0196-9722 | |
dc.relation.ispartof | Cybernetics and Systems | |
dc.source | Cybernetics and Systems[ISSN 0196-9722],v. 21, p. 241-247 | |
dc.title | Segmentation and recognition in visual chromatic spaces | |
dc.type | info:eu-repo/semantics/Article | |
dc.type | Article | |
dc.identifier.doi | 10.1080/01969729008902237 | |
dc.identifier.scopus | 0025401562 | |
dc.identifier.isi | A1990DK32000010 | |
dc.contributor.authorscopusid | 7003600272 | |
dc.contributor.authorscopusid | 6506605273 | |
dc.contributor.authorscopusid | 6603605708 | |
dc.description.lastpage | 247 | |
dc.description.firstpage | 241 | |
dc.relation.volume | 21 | |
dc.type2 | Artículo | |
dc.contributor.daisngid | 5955148 | |
dc.contributor.daisngid | 7544831 | |
dc.contributor.daisngid | 11093563 | |
dc.contributor.wosstandard | WOS:GONZALEZRODRIGUEZ, M | |
dc.contributor.wosstandard | WOS:BENITEZDIAZ, D | |
dc.contributor.wosstandard | WOS:SUAREZARAUJO, CP | |
dc.date.coverdate | Enero 1990 | |
dc.identifier.ulpgc | Sí | es |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-8826-0899 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Suárez Araujo, Carmen Paz | - |
Colección: | Artículos |
Citas SCOPUSTM
2
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 15-dic-2024
Visitas
46
actualizado el 19-ago-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.