Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54111
Campo DC Valoridioma
dc.contributor.authorGonzalez-Rodriguez, M.
dc.contributor.authorBenitez-Diaz, D.
dc.contributor.authorSuarez-Araujo, C. P.
dc.date.accessioned2019-02-18T08:43:48Z-
dc.date.available2019-02-18T08:43:48Z-
dc.date.issued1990
dc.identifier.issn0196-9722
dc.identifier.urihttp://hdl.handle.net/10553/54111-
dc.description.abstractThe discriminatory additional information supplied by chromatic components of an image is useful for segmentation techniques that allow fast and efficient separation of the objects in a scene. We show a method that has two essential processes for separating and recognizing pans of a scene in the UVY visual chromatic space. In the learning process, each part of the scene is analyzed, extracting all its discriminatory chromatic features. For this purpose we use a clustering analysis, which divides the scene in several sections with similar chromatic features. This set of features constitutes the “learning bank.” The recognition process consists of recognizing, using the learning bank, each section obtained in clustering analysis. © 1990 Taylor & Francis Group, LLC.
dc.publisher0196-9722
dc.relation.ispartofCybernetics and Systems
dc.sourceCybernetics and Systems[ISSN 0196-9722],v. 21, p. 241-247
dc.titleSegmentation and recognition in visual chromatic spaces
dc.typeinfo:eu-repo/semantics/Article
dc.typeArticle
dc.identifier.doi10.1080/01969729008902237
dc.identifier.scopus0025401562
dc.identifier.isiA1990DK32000010
dc.contributor.authorscopusid7003600272
dc.contributor.authorscopusid6506605273
dc.contributor.authorscopusid6603605708
dc.description.lastpage247
dc.description.firstpage241
dc.relation.volume21
dc.type2Artículo
dc.contributor.daisngid5955148
dc.contributor.daisngid7544831
dc.contributor.daisngid11093563
dc.contributor.wosstandardWOS:GONZALEZRODRIGUEZ, M
dc.contributor.wosstandardWOS:BENITEZDIAZ, D
dc.contributor.wosstandardWOS:SUAREZARAUJO, CP
dc.date.coverdateEnero 1990
dc.identifier.ulpgces
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

2
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 15-dic-2024

Visitas

46
actualizado el 19-ago-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.