Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/53046
Título: Modelling contingent valuation iterated elicitation data with an MCMC approach
Autores/as: Arana, Jorge E. 
León González, Carmelo Javier 
Palabras clave: Starting-Point Bias
Dichotomous-Choice
Distributions
Regression
Inference, et al.
Fecha de publicación: 2006
Editor/a: 0210-1173
Publicación seriada: Hacienda Publica Espanola 
Resumen: The valuation of non-market goods involves iterated elicitation questions which obtain more information from the sample respondents and lead to more efficient welfare estimates. In this paper we consider the improvements which could be obtained by utilising a Bayesian MCMC approach to model this type of data. A fully informative prior resulting from previous stages is compared with a flat non-informative prior utilising both simulated and empirical data. These priors are combined with data in each stage to form the posteriors which are simulated with Gibbs sampling algorithms. The models are applied to an elicitation tree involving two successive dichotomous choice questions followed by an open-ended question. Monte Carlo simulations show that taking into account the information process implicit in successive elicitation improves the performance of the results at each stage and increases efficiency. Thus, the model allows the researcher to consider the evolving process along the elicitation tree, while increasing useful information obtained from the individual.
URI: http://hdl.handle.net/10553/53046
ISSN: 0210-1173
Fuente: Hacienda Publica Espanola[ISSN 0210-1173] (177), p. 83-105
Colección:Artículos
Vista completa

Visitas

82
actualizado el 15-dic-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.