Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52767
Título: Symmetric optical flow
Autores/as: Alvarez, L 
Castaño, C. A.
García, M.
Krissian, K. 
Mazorra, L. 
Salgado, A.
Sánchez, J. 
Clasificación UNESCO: 120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
220990 Tratamiento digital. Imágenes
120326 Simulación
120304 Inteligencia artificial
Palabras clave: Registration
Fecha de publicación: 2007
Editor/a: 0302-9743
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 11th International Conference on Computer Aided Systems Theory, EUROCAST 2007 
Resumen: One of the main technique used to recover motion analysis from two images or to register them is variational optical flow, where the pixels of one image are matched to the pixels of the second image by minimizing an energy functional. In the standard formulation of variational optical flow, the estimated motion vector field depends on the reference image and is asymmetric. However, in most application the solution should be independent of the reference image. Only few symmetrical formulations of the optical flow has been proposed in the literature, where the solution is constraint to be symmetric using a combination of the flow in both directions. We propose a new symmetric variational formulation of the optical flow problem, where the flow is naturally symmetric. Results on the Yosemite sequence show an improved accuracy of our symmetric flow with respect to standard optical flow algorithm.
URI: http://hdl.handle.net/10553/52767
ISBN: 978-3-540-75866-2
ISSN: 0302-9743
DOI: 10.1007/978-3-540-75867-9_85
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 4739 LNCS, p. 676-683
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

12
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

11
actualizado el 25-feb-2024

Visitas

113
actualizado el 23-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.