Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/52644
DC FieldValueLanguage
dc.contributor.authorMorales Moreno, Aythamien_US
dc.contributor.authorDiaz, Moisesen_US
dc.contributor.authorLlinas-Sanchez, Gloriaen_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.date.accessioned2018-12-13T11:38:31Z-
dc.date.available2018-12-13T11:38:31Z-
dc.date.issued2016en_US
dc.identifier.isbn9781479986910
dc.identifier.issn1071-6572en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/52644-
dc.description.abstractThe earmarks are usual evidences in many real criminal investigations. The earprint appears for example when a criminal tries to listen through a window or a door before entering, and the methods to make it visible are similar to those used in latent fingerprint lifting. However, its acceptance as evidence in real prosecutions still raises doubts. Although it is well-accepted the uniqueness of the ear and its usefulness for person identification, the permanence of such discriminate ability in earprints is not obvious. Although the earprints do not have a powerful distinctiveness information, they are useful in a bag of evidences, being a promising soft biometric. This paper explores the discriminant properties of local descriptors for earprint-based automatic biometric recognition systems. The literature has focused on automatic systems based on the global aspect of the images, however scarcely studies have coped with in the well-known discriminate ability of earprint local characteristics. The experiments using more than 6000 images from 1200 people suggest a promising performance in comparison with previous existing proposals based on global features and encourage to further explore in this new soft biometric traits.en_US
dc.languageengen_US
dc.relation.ispartofProceedings - International Carnahan Conference on Security Technologyen_US
dc.sourceProceedings - International Carnahan Conference on Security Technology[ISSN 1071-6572],v. 2015-January (7389691), p. 253-258en_US
dc.subject330412 Dispositivos de controlen_US
dc.subject.otherAuthenticationen_US
dc.subject.otherBiometricen_US
dc.subject.otherEarprinten_US
dc.subject.otherForensicsen_US
dc.titleEarprint recognition based on an ensemble of global and local featuresen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conference49th Annual IEEE International Carnahan Conference on Security Technology, ICCST 2015
dc.identifier.doi10.1109/CCST.2015.7389691
dc.identifier.scopus84964840268
dc.contributor.authorscopusid24476050500
dc.contributor.authorscopusid36760594500
dc.contributor.authorscopusid57189048942
dc.contributor.authorscopusid55636321172
dc.description.lastpage258-
dc.description.firstpage253-
dc.relation.volume2015-January-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.date.coverdateEnero 2016
dc.identifier.conferenceidevents120934
dc.identifier.ulpgces
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.event.eventsstartdate21-09-2015-
crisitem.event.eventsenddate24-09-2015-
Appears in Collections:Actas de congresos
Thumbnail
Adobe PDF (7,12 MB)
Show simple item record

SCOPUSTM   
Citations

15
checked on Mar 30, 2025

Page view(s)

149
checked on Dec 28, 2024

Download(s)

307
checked on Dec 28, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.