Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/52611
Title: Riesz transforms and multipliers for the Bessel-Grushin operator
Authors: Almeida, Victor
Betancor, Jorge J.
Castro, Alejandro J.
Sadarangani, Kishin 
UNESCO Clasification: 12 Matemáticas
Keywords: Sharp Spectral Multipliers
Laguerre Expansions
Hermite Expansions
Poisson Integrals
Spaces, et al
Issue Date: 2016
Journal: Journal d'Analyse Mathematique 
Abstract: We establish that the spectral multiplier (Formula presented.) associated to the differential operator (Formula presented.) on (Formula presented.), which we call the Bessel-Grushin operator, is of weak type (1, 1) provided that M is in a suitable local Sobolev space. In order to do this, we prove a suitable weighted Plancherel estimate. Also, we study Lp-boundedness properties of Riesz transforms associated to (Formula presented.) in the case n = 1.
URI: http://hdl.handle.net/10553/52611
ISSN: 0021-7670
DOI: 10.1007/s11854-016-0002-3
Source: Journal d'Analyse Mathematique[ISSN 0021-7670],v. 128, p. 51-106
Appears in Collections:Artículos
Show full item record

Page view(s)

6
checked on Jul 10, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.