Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/52596
DC FieldValueLanguage
dc.contributor.authorAlvarez, Luisen_US
dc.contributor.authorDíaz, Gregorioen_US
dc.contributor.authorDíaz, Jesús Ildefonsoen_US
dc.contributor.otherAlvarez, Luis-
dc.contributor.otherDiaz Diaz, Gregorio-
dc.contributor.otherDiaz, Jesus Ildefonso-
dc.date.accessioned2018-12-04T13:09:14Z-
dc.date.available2018-12-04T13:09:14Z-
dc.date.issued2016en_US
dc.identifier.issn0362-546Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/52596-
dc.description.abstractWe study the geometric flow parabolic equation and its implicit discretization which yield a family of nonlinear elliptic problems. We show that there are important differences in the study of those equations which concerns the propagation of level sets of data. Our study is based on the previous study of radially symmetric solutions of the corresponding equation. Curiously, in radial coordinates both equations reduce to suitable singular Hamilton-Jacobi first order equations. After considering the case of monotone data we point out a new peculiar behavior for non-monotone data with a profile of Batman type (g=min{g1,g2},g1(r) increasing, g2(r) decreasing and g1(rd)=g2(rd) for some rd>0). In the parabolic regime, and when the velocity of the convexity part of the level sets is greater than the velocity of the concavity part, we show that the level set {u=g(rd)} develops a non-empty interior set for any t>0. Nothing similar occurs in the stationary regime. We also present some numerical experiences.en_US
dc.languageengen_US
dc.relation.ispartofNonlinear Analysis, Theory, Methods and Applicationsen_US
dc.sourceNonlinear Analysis, Theory, Methods and Applications[ISSN 0362-546X],v. 137, p. 43-76en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject120602 Ecuaciones diferencialesen_US
dc.subject120326 Simulaciónen_US
dc.subject.otherGeometric flowen_US
dc.subject.otherImplicit discretizationen_US
dc.subject.otherNonlinear parabolic and elliptic equationsen_US
dc.titleSome qualitative properties for geometric flows and its Euler implicit discretizationen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.na.2015.11.023
dc.identifier.scopus84950111997-
dc.identifier.isi000374007900003-
dcterms.isPartOfNonlinear Analysis-Theory Methods & Applications-
dcterms.sourceNonlinear Analysis-Theory Methods & Applications[ISSN 0362-546X],v. 137, p. 43-76-
dc.contributor.authorscopusid55640159000-
dc.contributor.authorscopusid56344039900-
dc.contributor.authorscopusid57192906888
dc.contributor.authorscopusid7401603758-
dc.description.lastpage76-
dc.description.firstpage43-
dc.relation.volume137-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000374007900003-
dc.contributor.daisngid478566-
dc.contributor.daisngid686791-
dc.contributor.daisngid158592-
dc.identifier.investigatorRIDA-9190-2009-
dc.identifier.investigatorRIDO-7872-2016-
dc.identifier.investigatorRIDL-6827-2014-
dc.identifier.externalWOS:000374007900003-
dc.contributor.wosstandardWOS:Alvarez, L
dc.contributor.wosstandardWOS:Diaz, G
dc.contributor.wosstandardWOS:Diaz, JI
dc.date.coverdateMayo 2016
dc.identifier.ulpgces
dc.description.sjr1,474
dc.description.jcr1,192
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Modelos Matemáticos-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-6953-9587-
crisitem.author.parentorgDepartamento de Informática y Sistemas-
crisitem.author.fullNameÁlvarez León, Luis Miguel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 24, 2024

Page view(s)

99
checked on Mar 9, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.