Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52591
Título: Methodology for automatic bioacoustic classification of anurans based on feature fusion
Autores/as: Noda, Juan J.
Travieso, Carlos M. 
Sanchez-Rodriguez, David 
Clasificación UNESCO: 240601 Bioacústica
3307 Tecnología electrónica
Palabras clave: Acoustic data fusion
Bioacoustic taxonomy identification
Biological acoustic analysis
SVM
Fecha de publicación: 2016
Publicación seriada: Expert Systems with Applications 
Resumen: The automatic recognition of anurans by their calls provides indicators of ecosystem health and habitat quality. This paper presents a new methodology for the acoustic classification of anurans using a fusion of frequency domain features, Mel and Linear Frequency Cepstral Coefficients (MFCCs and LFCCs), with time domain features like entropy and syllable duration through intelligent systems. This methodology has been validated in three databases with a significant number of different species proving the strength of this approach. First, the audio recordings are automatically segmented into syllables which represent different anuran calls. For each syllable, both types of features are computed and evaluated separately as in previous works. In the experiments, a novel data fusion method has been used showing an increase of the classification accuracy which achieves an average of 98.80% ± 2.43 in 41 anuran species from AmphibiaWeb database, 96.90% ± 3.57 in 58 frogs from Cuba and 95.48% ± 4.97 in 100 anurans from southern Brazil and Uruguay; reaching a classification rate of 95.38% ± 5.05 for the aggregate dataset of 199 species.
URI: http://hdl.handle.net/10553/52591
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2015.12.020
Fuente: Expert Systems With Applications[ISSN 0957-4174],v. 50, p. 100-106
Colección:Artículos
Vista completa

Citas SCOPUSTM   

26
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

26
actualizado el 17-nov-2024

Visitas

57
actualizado el 10-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.