Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/52455
Title: Sleep quality differences according to a statistical continuous sleep model
Authors: Ravelo-García, A. G. 
Lorenzo-García, F. D.
Navarro-Mesa, J. L. 
Issue Date: 2009
Publisher: 1876-1100
Journal: Lecture Notes in Electrical Engineering 
Conference: European Computing Conference 
Abstract: This paper presents sleep quality differences between good and bad sleepers measured with a statistical continuous sleep model according to the Self-Rating Questionnaire for Sleep and Awakening Quality (SSA). Our main goal is to describe sleep continuous traces that take into account the sleep stage probability with a temporal resolution of 3 s, instead of the Rechtschaffen and Kales (R and K) resolution, which is 30 s. We adopt in our study the probability of being in stages W, S1, S2, S3, S4, and REM. The system uses only one electroencephalographic (EEG) channel. In order to achieve this goal we start by applying a hidden Markov model, in which the hidden states are associated with the sleep stages. These are probabilistic models that constitute the basis for the estimation of the sleep stage probabilities. The features that feed our model are based on the application of a discrete cosine transform to a vector of logarithmic energies at the output of a set of linearly spaced filters. In order to find differences between groups of sleepers, we define some measures based on the probabilistic traces. The experiments are performed over 24 recordings from the SIESTA database. The results show that our system performs well in finding differences in the presence of the Wake and S4 sleep stages for each group. © 2009 Springer Science+Business Media, LLC.
URI: http://hdl.handle.net/10553/52455
ISBN: 9780387848136
ISSN: 1876-1100
DOI: 10.1007/978-0-387-84814-3_14
Source: Lecture Notes in Electrical Engineering[ISSN 1876-1100],v. 27 LNEE, p. 133-141
Appears in Collections:Actas de congresos
Show full item record

SCOPUSTM   
Citations

2
checked on Apr 11, 2020

Page view(s)

2
checked on May 30, 2020

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.