Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52425
Título: A rapid and efficient 2D/3D nuclear segmentation method for analysis of early mouse embryo and stem cell image data
Autores/as: Lou, Xinghua
Kang, Minjung
Xenopoulos, Panagiotis
Muñoz-Descalzo, Silvia 
Hadjantonakis, Anna Katerina
Clasificación UNESCO: 32 Ciencias médicas
3201 Ciencias clínicas
Palabras clave: Embryo
Embryonic Stem Cells
Image processing
Microscopy
Fecha de publicación: 2014
Publicación seriada: Stem Cell Reports 
Resumen: Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses.
URI: http://hdl.handle.net/10553/52425
ISSN: 2213-6711
DOI: 10.1016/j.stemcr.2014.01.010
Fuente: Stem Cell Reports[ISSN 2213-6711],v. 2, p. 382-397 (Marzo 2014)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.