Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52425
Campo DC Valoridioma
dc.contributor.authorLou, Xinghuaen_US
dc.contributor.authorKang, Minjungen_US
dc.contributor.authorXenopoulos, Panagiotisen_US
dc.contributor.authorMuñoz-Descalzo, Silviaen_US
dc.contributor.authorHadjantonakis, Anna Katerinaen_US
dc.date.accessioned2018-11-25T20:13:37Z-
dc.date.available2018-11-25T20:13:37Z-
dc.date.issued2014en_US
dc.identifier.issn2213-6711en_US
dc.identifier.urihttp://hdl.handle.net/10553/52425-
dc.description.abstractSegmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses.en_US
dc.languageengen_US
dc.relation.ispartofStem Cell Reportsen_US
dc.sourceStem Cell Reports[ISSN 2213-6711],v. 2, p. 382-397 (Marzo 2014)en_US
dc.subject32 Ciencias médicasen_US
dc.subject3201 Ciencias clínicasen_US
dc.subject.otherEmbryoen_US
dc.subject.otherEmbryonic Stem Cellsen_US
dc.subject.otherImage processingen_US
dc.subject.otherMicroscopyen_US
dc.titleA rapid and efficient 2D/3D nuclear segmentation method for analysis of early mouse embryo and stem cell image dataen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.stemcr.2014.01.010en_US
dc.identifier.scopus84896073709-
dc.contributor.authorscopusid36154372500-
dc.contributor.authorscopusid55382458400-
dc.contributor.authorscopusid14833606100-
dc.contributor.authorscopusid9235908900-
dc.contributor.authorscopusid6701560632-
dc.description.lastpage397en_US
dc.description.firstpage382en_US
dc.relation.volume2en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.date.coverdateMarzo 2014en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr4,973-
dc.description.jcr5,365-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Morfología-
crisitem.author.orcid0000-0003-0939-7721-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameMuñoz Descalzo, Silvia-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

83
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

80
actualizado el 17-nov-2024

Visitas

84
actualizado el 07-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.