Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/52421
DC FieldValueLanguage
dc.contributor.authorHernández-Flores, C. N.en_US
dc.contributor.authorArtiles-Romero, J.en_US
dc.contributor.authorSaavedra-Santana, Pedroen_US
dc.date.accessioned2018-11-25T20:11:22Z-
dc.date.available2018-11-25T20:11:22Z-
dc.date.issued1999en_US
dc.identifier.issn0167-9473en_US
dc.identifier.urihttp://hdl.handle.net/10553/52421-
dc.description.abstractA random sample of r objects from a certain population is considered, measuring for each of them and at the same time points a stationary process Xi(t) whose spectral distribution is absolutely continuous. Each spectral density function fi(ω) may be considered as a realization of a stationary process R(ω), for which a population spectrum f(ω) is defined as E[R(ω)]. Thus, r time series are available to estimate the population spectrum f(ω). It is well known that when a single time series is analysed, the periodogram is a poor estimate of the spectral density. However, when using replicated time series, the average periodogram behaves adequately as an estimate of the population spectrum if the number of objects is large. The asymptotic properties of the average periodogram are analysed and confidence intervals for the population spectrum are constructed. An alternative bootstrap method is proposed for the estimation of the population spectrum and the asymptotic validity, in the sense of Bickel and Freedman, is proved when the number of objects is large. Replicated time series simulated from a moving average process with random coefficients and confidence intervals are constructed for the population spectrum using the bootstrap approach. These intervals are compared with the intervals obtained by means of the asymptotic properties of the average periodogram.en_US
dc.languageengen_US
dc.relation.ispartofComputational Statistics and Data Analysisen_US
dc.sourceComputational Statistics and Data Analysis [ISSN 0167-9473], v. 30 (3), p. 271-280en_US
dc.subject240401 Bioestadísticaen_US
dc.subject120903 Análisis de datosen_US
dc.subject.otherReplicated time seriesen_US
dc.subject.otherSpectral estimateen_US
dc.subject.otherAverage periodogramen_US
dc.subject.otherBootstrapen_US
dc.subject.otherMallows metricen_US
dc.titleEstimation of the population spectrum with replicated time seriesen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/S0167-9473(98)00099-1
dc.identifier.scopus0039183715-
dc.identifier.isi000080254300003
dc.contributor.authorscopusid8971071000-
dc.contributor.authorscopusid8971071100-
dc.contributor.authorscopusid56677724200-
dc.description.lastpage280-
dc.identifier.issue3-
dc.description.firstpage271-
dc.relation.volume30-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid7874823
dc.contributor.daisngid10760970
dc.contributor.daisngid3094556
dc.contributor.wosstandardWOS:Hernandez-Flores, CN
dc.contributor.wosstandardWOS:Artiles-Romero, J
dc.contributor.wosstandardWOS:Saavedra-Santana, P
dc.date.coverdateMayo 1999
dc.identifier.ulpgces
dc.description.jcr0,295
dc.description.jcrqQ3
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Estadística-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Estadística-
crisitem.author.deptGIR Estadística-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0003-0415-822X-
crisitem.author.orcid0000-0003-1681-7165-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameHernández Flores, Carmen Nieves-
crisitem.author.fullNameArtiles Romero,Juan-
crisitem.author.fullNameSaavedra Santana, Pedro-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 24, 2024

Page view(s)

107
checked on Feb 17, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.