Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/52420
DC FieldValueLanguage
dc.contributor.authorSaavedra Santana, Pedroen_US
dc.contributor.authorHernández, C. N.en_US
dc.contributor.authorArtiles, J.en_US
dc.date.accessioned2018-11-25T20:10:54Z-
dc.date.available2018-11-25T20:10:54Z-
dc.date.issued2000en_US
dc.identifier.issn0361-0926en_US
dc.identifier.urihttp://hdl.handle.net/10553/52420-
dc.description.abstractA doubly stochastic process {x(b,t);b∊B,t∊Z} is considered, with (B,β,Pβ) being a probability space so that for each b, {X(b,t);t ∊ Z} is a stationary process with an absolutely continuous spectral distribution. The population spectrum is defined as f(ω) = EB[Q(b,ω)] with Q(b,ω) being the spectral density function of X(b,t). The aim of this paper is to estimate f(ω) by means of a random sample b1,…,br from (B,β,Pβ). For each b1∊ B, the processes X(b1,t) are observed at the same times t=1,…,N. Thus, r time series (x(b1,t)} are available in order to estimate f(ω). A model for each individual periodogram, which involves f(ω), is formulated. It has been proven that a certain family of linear stationary processes follows the above model In this context, a kernel estimator is proposed in order to estimate f(ω). The bias, variance and asymptotic distribution of this estimator are investigated under certain conditions.en_US
dc.languageengen_US
dc.relation.ispartofCommunications in Statistics - Theory and Methodsen_US
dc.sourceCommunications in Statistics - Theory and Methods [ISSN 0361-0926], v. 29 (11), p. 2343-2362en_US
dc.subject240401 Bioestadísticaen_US
dc.subject.otherAverage periodogramen_US
dc.subject.otherKernel spectral estimateen_US
dc.subject.otherBandwidthen_US
dc.titleSpectral analysis with replicated time seriesen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1080/03610920008832610en_US
dc.identifier.scopus26844453046-
dc.identifier.isi000165138300001
dc.contributor.authorscopusid56677724200-
dc.contributor.authorscopusid8971071000-
dc.contributor.authorscopusid8971071100-
dc.identifier.eissn1532-415X-
dc.description.lastpage2362-
dc.identifier.issue11-
dc.description.firstpage2343-
dc.relation.volume29-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid3459270
dc.contributor.daisngid5322222
dc.contributor.daisngid11928510
dc.contributor.wosstandardWOS:Saavedra, P
dc.contributor.wosstandardWOS:Hernandez, CN
dc.contributor.wosstandardWOS:Artiles, J
dc.date.coverdateDiciembre 2000
dc.identifier.ulpgces
dc.description.jcr0,193
dc.description.jcrqQ4
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Estadística-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Estadística-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Estadística-
crisitem.author.orcid0000-0003-1681-7165-
crisitem.author.orcid0000-0003-0415-822X-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameSaavedra Santana, Pedro-
crisitem.author.fullNameHernández Flores, Carmen Nieves-
crisitem.author.fullNameArtiles Romero,Juan-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

5
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

5
checked on Mar 30, 2025

Page view(s)

88
checked on Dec 9, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.