Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/52417
DC FieldValueLanguage
dc.contributor.authorLuengo-Merino, I.en_US
dc.contributor.authorHernández-Flores, C. N.en_US
dc.contributor.authorSaavedra-Santana, Pedroen_US
dc.date.accessioned2018-11-25T20:09:24Z-
dc.date.available2018-11-25T20:09:24Z-
dc.date.issued2006en_US
dc.identifier.isbn978-0-7354-0356-7en_US
dc.identifier.issn0094-243Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/52417-
dc.description.abstractOn each object belonging to a certain population, a signal can be observed. We suppose that those signals come from an additive random effect model involving a population pattern, individual effect and intra-individual noise. The main purpose of this paper is to estimate the underlying pattern from a set of signals observed on a random sample of objects of the population at the same time points. If the number of observations per object is a dyadic number, several estimations of the population pattern are proposed using the wavelet transforms. A simulation study is carried out using the four test functions given by Donoho and Johnstone (1994) as patterns, considering two types of individual components and white and correlated noise. The goodness of fit is analysed for the aforementioned four signal types. A threshold obtained by successive iterations, proposed by Baxter and Upton (2002), is also analysed.en_US
dc.languageengen_US
dc.relation.ispartofAIP Conference Proceedingsen_US
dc.sourceAIP Conference Proceedings [ISSN 0094-243X], v. 860, p. 331-335en_US
dc.subject120903 Análisis de datosen_US
dc.subject240401 Bioestadísticaen_US
dc.subject.otherRandom effect modelen_US
dc.subject.otherThresholdingen_US
dc.subject.otherWavelet transformationen_US
dc.titleComparing wavelets estimators for a set of signalsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.identifier.doi10.1063/1.2361235en_US
dc.identifier.scopus33846516924-
dc.contributor.authorscopusid15832376200-
dc.contributor.authorscopusid8971071000-
dc.contributor.authorscopusid56677724200-
dc.identifier.eissn1551-7616-
dc.description.lastpage335-
dc.description.firstpage331-
dc.relation.volume860-
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Estadística-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Estadística-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0003-0415-822X-
crisitem.author.orcid0000-0003-1681-7165-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameHernández Flores, Carmen Nieves-
crisitem.author.fullNameSaavedra Santana, Pedro-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

103
checked on Aug 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.