Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52260
Título: Semi-automatic segmentation and detection of aorta dissection wall in MDCT angiography
Autores/as: Krissian , Karl 
Carreira, Jose M.
Esclarin, Julio 
Maynar, Manuel
Clasificación UNESCO: 1203 Ciencia de los ordenadores
Palabras clave: Aorta
Computed tomography
Dissection wall
Vessel segmentation
Fecha de publicación: 2014
Publicación seriada: Medical Image Analysis 
Resumen: Aorta dissection is a serious vascular disease produced by a rupture of the tunica intima of the vessel wall that can be lethal to the patient. The related diagnosis is strongly based on images, where the multi-detector CT is the most generally used modality. We aim at developing a semi-automatic segmentation tool for aorta dissections, which will isolate the dissection (or flap) from the rest of the vascular structure. The proposed method is based on different stages, the first one being the semi-automatic extraction of the aorta centerline and its main branches, allowing an subsequent automatic segmentation of the outer wall of the aorta, based on a geodesic level set framework. This segmentation is then followed by an extraction the center of the dissected wall as a 3D mesh using an original algorithm based on the zero crossing of two vector fields. Our method has been applied to five datasets from three patients with chronic aortic dissection. The comparison with manually segmented dissections shows an average absolute distance value of about half a voxel. We believe that the proposed method, which tries to solve a problem that has attracted little attention to the medical image processing community, provides a new and interesting tool to isolate the intimal flap that can provide very useful information to the clinician.
URI: http://hdl.handle.net/10553/52260
ISSN: 1361-8415
DOI: 10.1016/j.media.2013.09.004
Fuente: Medical Image Analysis [ISSN 1361-8415], v. 18 (1), p. 83-102
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.