Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/52070
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Evora, Jose | en_US |
dc.contributor.author | Hernández Cabrera, José Juan | en_US |
dc.contributor.author | Hernandez, Mario | en_US |
dc.contributor.author | Dzemyda, Gintautas | en_US |
dc.contributor.author | Kurasova, Olga | en_US |
dc.contributor.author | Kremers, Enrique | en_US |
dc.date.accessioned | 2018-11-25T17:12:54Z | - |
dc.date.available | 2018-11-25T17:12:54Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.issn | 0868-4952 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/52070 | - |
dc.description.abstract | A secure and high-quality operation of power grids requires frequency to be managed to keep it stable around a reference value. The deviation of the frequency from this reference value is caused by the imbalance between the active power produced and consumed. In the Smart Grid paradigm, the balance can be achieved by adjusting the demand to the production constraints, instead of the other way round. In this paper, an swarm intelligence-based approach for frequency management is proposed. It is grounded on the idea that a swarm is composed of decentralised individual agents (particles) and that each of them interacts with other ones via a shared environment. Three swarm intelligence-based policies ensure a decentralised frequency management in the smart power grid, where agents of swarm are making decisions and acting on the demand side. Policies differ in behaviour function of agents. Finally, these policies are evaluated and compared using indicators that point out their advantages. | en_US |
dc.language | eng | en_US |
dc.relation | Framework Para la Simulación de la Gestión de Mercado y Técnica de Redes Eléctricas Insulares Basado en Agentes Inteligentes. Caso de la Red Eléctrica de Gran Canaria. | en_US |
dc.relation.ispartof | Informatica | en_US |
dc.source | Informatica (Netherlands) [ISSN 0868-4952], v. 26 (3), p. 419-434 | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Swarm intelligence | en_US |
dc.subject.other | Multi-agent system | en_US |
dc.subject.other | Behaviour function | en_US |
dc.subject.other | Energy system | en_US |
dc.subject.other | Demand side management | en_US |
dc.subject.other | Smart grid | en_US |
dc.subject.other | Frequency management | en_US |
dc.subject.other | Resilience | en_US |
dc.title | Swarm intelligence for frequency management in smart grids | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.15388/Informatica.2015.56 | en_US |
dc.identifier.scopus | 84951858041 | - |
dc.identifier.isi | 000363225700004 | - |
dc.contributor.authorscopusid | 55765472900 | - |
dc.contributor.authorscopusid | 56109424300 | - |
dc.contributor.authorscopusid | 7401972145 | - |
dc.contributor.authorscopusid | 57212239402 | - |
dc.contributor.authorscopusid | 6603800874 | - |
dc.contributor.authorscopusid | 55965465300 | - |
dc.contributor.authorscopusid | 36141961500 | - |
dc.description.lastpage | 434 | en_US |
dc.identifier.issue | 3 | - |
dc.description.firstpage | 419 | en_US |
dc.relation.volume | 26 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 4682726 | - |
dc.contributor.daisngid | 3554947 | - |
dc.contributor.daisngid | 21915345 | - |
dc.contributor.daisngid | 561964 | - |
dc.contributor.daisngid | 1088650 | - |
dc.contributor.daisngid | 1870330 | - |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Evora, J | - |
dc.contributor.wosstandard | WOS:Hernandez, JJ | - |
dc.contributor.wosstandard | WOS:Hernandez, M | - |
dc.contributor.wosstandard | WOS:Dzemyda, G | - |
dc.contributor.wosstandard | WOS:Kurasova, O | - |
dc.contributor.wosstandard | WOS:Kremers, E | - |
dc.date.coverdate | Diciembre 2015 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.description.sjr | 0,463 | |
dc.description.jcr | 1,386 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.project.principalinvestigator | Hernández Tejera, Francisco Mario | - |
crisitem.author.dept | GIR Tecnologías, Gestión y Biogeoquímica Ambiental | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-5305-1667 | - |
crisitem.author.orcid | 0000-0001-9717-8048 | - |
crisitem.author.parentorg | Departamento de Química | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Hernández Brito, José Joaquín | - |
crisitem.author.fullName | Hernández Tejera, Francisco Mario | - |
Colección: | Artículos |
Citas SCOPUSTM
5
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
5
actualizado el 17-nov-2024
Visitas
132
actualizado el 29-sep-2024
Descargas
190
actualizado el 29-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.