Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/52069
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Padron, S. | en_US |
dc.contributor.author | Hernández, M. | en_US |
dc.contributor.author | Falcón, A. | en_US |
dc.date.accessioned | 2018-11-25T17:12:25Z | - |
dc.date.available | 2018-11-25T17:12:25Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.issn | 0885-8950 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/52069 | - |
dc.description.abstract | Small isolated power systems often experience generator outages, which are responsible for the activation of the under-frequency load shedding scheme with the corresponding negative impact on electricity consumers and, hence, market loss. There are three main causes of this problem: the power system's low inertia, the speed governors' low capacity, and a poor size-ratio between generator and system. The most extensive research line in this area is focused on the optimization of the load shedding scheme, which is a partial solution. Another research line is presented to solve the problem from the point of view of the system operator. This paper proposes an online method to predict and correct possible load shedding by redistributing load dispatching. This proposal uses artificial intelligence techniques, in particular neural networks, and a special-purpose power system simulator. In order to evaluate the proposal, the achieved solution is applied to a real case study: the island of Gran Canaria. This application shows the improvement that might be achieved by implementing this simple method. The method proposed in this paper is strongly recommended for regions that have suitable geographical sites as well as energy problems similar to those of the Canary Islands (see tech. rep. “Map of the Canary Islands Power Systems” by Red Electrica de Espana). | en_US |
dc.language | eng | en_US |
dc.relation | Framework Para la Simulación de la Gestión de Mercado y Técnica de Redes Eléctricas Insulares Basado en Agentes Inteligentes. Caso de la Red Eléctrica de Gran Canaria. | en_US |
dc.relation.ispartof | IEEE Transactions on Power Systems | en_US |
dc.source | IEEE Transactions on Power Systems [ISSN 0885-8950], v. 31 (1), p. 63-71 | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Artificial intelligence | en_US |
dc.subject.other | Dynamic analysis | en_US |
dc.subject.other | Isolated power systems | en_US |
dc.subject.other | Load shedding | en_US |
dc.subject.other | Neural network | en_US |
dc.subject.other | Power system simulator | en_US |
dc.title | Reducing under-frequency load shedding in isolated power systems using neural networks. Gran Canaria : a case study | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/TPWRS.2015.2395142 | |
dc.identifier.scopus | 84922455688 | - |
dc.identifier.isi | 000367298100007 | |
dc.contributor.authorscopusid | 6603218936 | - |
dc.contributor.authorscopusid | 55859842000 | |
dc.contributor.authorscopusid | 7401972145 | - |
dc.contributor.authorscopusid | 56264673800 | - |
dc.description.lastpage | 71 | - |
dc.identifier.issue | 1 | - |
dc.description.firstpage | 63 | - |
dc.relation.volume | 31 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 6380632 | |
dc.contributor.daisngid | 17004489 | |
dc.contributor.daisngid | 6761927 | |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Padron, S | |
dc.contributor.wosstandard | WOS:Hernandez, M | |
dc.contributor.wosstandard | WOS:Falcon, A | |
dc.date.coverdate | Enero 2016 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 3,757 | |
dc.description.jcr | 5,68 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.project.principalinvestigator | Hernández Tejera, Francisco Mario | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.orcid | 0000-0001-9717-8048 | - |
crisitem.author.orcid | 0000-0002-7467-947X | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Hernández Tejera, Francisco Mario | - |
crisitem.author.fullName | Falcón Martel,Antonio | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
65
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
43
checked on Nov 17, 2024
Page view(s)
118
checked on Jun 15, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.