Please use this identifier to cite or link to this item:
Title: Seasonal variability of the oceanic upper layer and its modulation of biological cycles in the Canary Island region
Authors: Troupin, C.
Sangrá Inciarte, Pablo 
Arístegui, J. 
UNESCO Clasification: 2510 Oceanografía
Keywords: Canary Islands
Mixed layer depth
ROMS 1D bio-physical model
Biological cycles
KPP model, et al
Issue Date: 2010
Publisher: 0924-7963
Journal: Journal of Marine Systems 
Conference: 1st International Symposium on Marine Sciences 
Abstract: The Canary Island region is rich in mesoscale phenomena that affect cycles of physical and biological processes. A 1D version of the Regional Oceanic Modeling System (ROMS) is used south of the Gran Canaria Island to simulate seasonal climatologies of these cycles. The model is forced with monthly air–sea fluxes averaged from 1993 to 2002 and initialized with mean in situ profiles of temperature, salinity, oxygen and nitrate concentrations. The K-Profile Parameterization (KPP) mixed layer submodel is compared with other submodels using idealized numerical experiments. When forced with realistic air–sea fluxes, the model correctly reproduces the annual cycle of temperature (mixed layer depth), with minimum surface values of 18 °C (maximal depth > 105 m) in February during convective mixing resulting from a negative heat flux. Maximum temperatures above 23 °C (minimal depth < 20 m) are simulated from September to October after strong summer heating and a decrease in Trade Winds intensity. A simple ecosystem model is coupled to the physical model, which provides simulated biological cycles that are in agreement with regional observations. A phytoplankton bloom develops in late winter, driven by the injection of new nutrients into the euphotic layer. Simulated chlorophyll shows a deep maximum fluctuating around 100 m with concentrations around 1 mg Chla m− 3, while surface values are low (around 0.1 mg Chla m− 3 ) during most of the year. The physical and biological model results are validated by comparisons with data from regional studies, climatological fields and time-series from the ESTOC station.
ISSN: 0924-7963
DOI: 10.1016/j.jmarsys.2009.10.007
Source: Journal of Marine Systems [ISSN 0924-7963], v. 80, p. 172-183
Appears in Collections:Artículos
Show full item record


checked on Nov 27, 2022


checked on Feb 20, 2022

Page view(s)

checked on Jun 18, 2022

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.