Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/51615
Campo DC Valoridioma
dc.contributor.authorDe La Hoz, A. Plazaen_US
dc.contributor.otherPLAZA, ANGEL-
dc.date.accessioned2018-11-25T02:11:48Z-
dc.date.available2018-11-25T02:11:48Z-
dc.date.issued1996en_US
dc.identifier.issn1069-8299en_US
dc.identifier.urihttp://hdl.handle.net/10553/51615-
dc.description.abstractIn the paper the author presents a novel point of view for the refinement and derefinement algorithms of triangular nested meshes using fractal concepts and iterated function systems (IFS). The fractal behaviour can be understood in the sense that these meshes feature a remarkable amplifying invariance under changes of magnification. Here we compare the meshes obtained by the combination of these algorithms with those presented by Bova and Carey (1992). Although both of the meshes are very similar, the current algorithms automatically build and manage sequences of nested irregular discretizations of the domain. The author illustrates here how the application of IFS families is equivalent to the use of an adaptive strategy that combines the refinement procedure with the derefinement one.en_US
dc.languageengen_US
dc.relation.ispartofCommunications in Numerical Methods in Engineeringen_US
dc.sourceCommunications in Numerical Methods in Engineering [ISSN 1069-8299], v. 12 (5), p. 295-302en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherMesh generationen_US
dc.subject.otherAdaptivityen_US
dc.subject.otherIterated fractal systemsen_US
dc.titleThe fractal behaviour of triangular refined/derefined meshesen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1002/(SICI)1099-0887(199605)12:5<295::AID-CNM967>3.0.CO;2-7
dc.identifier.scopus0030143285-
dc.identifier.isiA1996UN36700003-
dc.identifier.isiA1996UN36700003-
dcterms.isPartOfCommunications In Numerical Methods In Engineering-
dcterms.sourceCommunications In Numerical Methods In Engineering[ISSN 1069-8299],v. 12 (5), p. 295-302-
dc.contributor.authorscopusid7006613647-
dc.identifier.eissn1099-0887-
dc.description.lastpage302-
dc.identifier.issue5-
dc.description.firstpage295-
dc.relation.volume12-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:A1996UN36700003-
dc.contributor.daisngid12015481-
dc.identifier.investigatorRIDA-8210-2008-
dc.identifier.externalWOS:A1996UN36700003-
dc.identifier.externalWOS:A1996UN36700003-
dc.contributor.wosstandardWOS:DelaHoz, AP
dc.date.coverdateEnero 1996
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

9
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

7
actualizado el 20-feb-2022

Visitas

58
actualizado el 08-abr-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.